forked from M-Labs/nalgebra
Merge pull request #535 from rustsim/sparse
Limited, experimental, sparse matrix support
This commit is contained in:
commit
8117f61c1c
@ -23,8 +23,10 @@ stdweb = [ "rand/stdweb" ]
|
||||
arbitrary = [ "quickcheck" ]
|
||||
serde-serialize = [ "serde", "serde_derive", "num-complex/serde" ]
|
||||
abomonation-serialize = [ "abomonation" ]
|
||||
sparse = [ ]
|
||||
debug = [ ]
|
||||
alloc = [ ]
|
||||
io = [ "pest", "pest_derive" ]
|
||||
|
||||
[dependencies]
|
||||
typenum = "1.10"
|
||||
@ -33,13 +35,15 @@ rand = { version = "0.6", default-features = false }
|
||||
num-traits = { version = "0.2", default-features = false }
|
||||
num-complex = { version = "0.2", default-features = false }
|
||||
approx = { version = "0.3", default-features = false }
|
||||
alga = { version = "0.7", default-features = false }
|
||||
alga = { version = "0.8", default-features = false }
|
||||
matrixmultiply = { version = "0.2", optional = true }
|
||||
serde = { version = "1.0", optional = true }
|
||||
serde_derive = { version = "1.0", optional = true }
|
||||
abomonation = { version = "0.7", optional = true }
|
||||
mint = { version = "0.5", optional = true }
|
||||
quickcheck = { version = "0.7", optional = true }
|
||||
quickcheck = { version = "0.8", optional = true }
|
||||
pest = { version = "2.0", optional = true }
|
||||
pest_derive = { version = "2.0", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
serde_json = "1.0"
|
||||
|
@ -11,7 +11,7 @@ if [ -z "$NO_STD" ]; then
|
||||
cargo build --verbose -p nalgebra --features "serde-serialize";
|
||||
cargo build --verbose -p nalgebra --features "abomonation-serialize";
|
||||
cargo build --verbose -p nalgebra --features "debug";
|
||||
cargo build --verbose -p nalgebra --features "debug arbitrary mint serde-serialize abomonation-serialize";
|
||||
cargo build --verbose -p nalgebra --all-features
|
||||
else
|
||||
cargo build -p nalgebra-lapack;
|
||||
fi
|
||||
|
@ -51,8 +51,8 @@ fn main() {
|
||||
// Components listed column-by-column.
|
||||
1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
|
||||
]
|
||||
.iter()
|
||||
.cloned(),
|
||||
.iter()
|
||||
.cloned(),
|
||||
);
|
||||
|
||||
assert_eq!(dm, dm1);
|
||||
|
@ -23,5 +23,5 @@ abomonation-serialize = [ "nalgebra/abomonation-serialize" ]
|
||||
[dependencies]
|
||||
num-traits = { version = "0.2", default-features = false }
|
||||
approx = { version = "0.3", default-features = false }
|
||||
alga = { version = "0.7", default-features = false }
|
||||
alga = { version = "0.8", default-features = false }
|
||||
nalgebra = { path = "..", version = "^0.16.13", default-features = false }
|
||||
|
@ -9,7 +9,7 @@ where DefaultAllocator: Alloc<N, D, D> {
|
||||
TMat::<N, D, D>::identity()
|
||||
}
|
||||
|
||||
/// Build a right hand look at view matrix
|
||||
/// Build a look at view matrix based on the right handedness.
|
||||
///
|
||||
/// # Parameters:
|
||||
///
|
||||
|
@ -110,6 +110,7 @@
|
||||
and keep in mind it is possible to convert, e.g., an `Isometry3` to a `Mat4` and vice-versa (see the [conversions section](#conversions)).
|
||||
*/
|
||||
|
||||
#![doc(html_favicon_url = "http://nalgebra.org/img/favicon.ico")]
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
|
||||
extern crate num_traits as num;
|
||||
|
@ -25,7 +25,7 @@ intel-mkl = ["lapack-src/intel-mkl"]
|
||||
nalgebra = { version = "0.16", path = ".." }
|
||||
num-traits = "0.2"
|
||||
num-complex = { version = "0.2", default-features = false }
|
||||
alga = { version = "0.7", default-features = false }
|
||||
alga = { version = "0.8", default-features = false }
|
||||
serde = { version = "1.0", optional = true }
|
||||
serde_derive = { version = "1.0", optional = true }
|
||||
lapack = { version = "0.16", default-features = false }
|
||||
@ -34,6 +34,6 @@ lapack-src = { version = "0.2", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
nalgebra = { version = "0.16", path = "..", features = [ "arbitrary" ] }
|
||||
quickcheck = "0.7"
|
||||
quickcheck = "0.8"
|
||||
approx = "0.3"
|
||||
rand = "0.6"
|
||||
|
@ -68,8 +68,10 @@
|
||||
#![deny(unused_qualifications)]
|
||||
#![deny(unused_results)]
|
||||
#![deny(missing_docs)]
|
||||
#![doc(html_favicon_url = "http://nalgebra.org/img/favicon.ico",
|
||||
html_root_url = "http://nalgebra.org/rustdoc")]
|
||||
#![doc(
|
||||
html_favicon_url = "http://nalgebra.org/img/favicon.ico",
|
||||
html_root_url = "http://nalgebra.org/rustdoc"
|
||||
)]
|
||||
|
||||
extern crate alga;
|
||||
extern crate lapack;
|
||||
|
@ -1,4 +1,4 @@
|
||||
// Non-conventional componentwise operators.
|
||||
// Non-conventional component-wise operators.
|
||||
|
||||
use num::{Signed, Zero};
|
||||
use std::ops::{Add, Mul};
|
||||
|
@ -12,8 +12,10 @@ use typenum::Prod;
|
||||
use base::allocator::{Allocator, SameShapeAllocator};
|
||||
use base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
use base::dimension::{
|
||||
Dim, DimName, Dynamic, U1, U10, U11, U12, U13, U14, U15, U16, U2, U3, U4, U5, U6, U7, U8, U9,
|
||||
Dim, DimName, U1, U10, U11, U12, U13, U14, U15, U16, U2, U3, U4, U5, U6, U7, U8, U9,
|
||||
};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use base::dimension::Dynamic;
|
||||
use base::iter::{MatrixIter, MatrixIterMut};
|
||||
use base::storage::{ContiguousStorage, ContiguousStorageMut, Storage, StorageMut};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
|
@ -364,7 +364,8 @@ impl<
|
||||
G: Bit + Any + Debug + Copy + PartialEq + Send + Sync,
|
||||
> IsNotStaticOne
|
||||
for UInt<UInt<UInt<UInt<UInt<UInt<UInt<UInt<UTerm, B1>, A>, B>, C>, D>, E>, F>, G>
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Sync> NamedDim
|
||||
for UInt<U, B>
|
||||
@ -405,4 +406,5 @@ impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Syn
|
||||
|
||||
impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Sync> IsNotStaticOne
|
||||
for UInt<U, B>
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
@ -1,13 +1,18 @@
|
||||
use num::{One, Zero};
|
||||
use std::cmp;
|
||||
use std::ptr;
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use std::iter::ExactSizeIterator;
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use std::mem;
|
||||
|
||||
use base::allocator::{Allocator, Reallocator};
|
||||
use base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
||||
use base::dimension::{
|
||||
Dim, DimAdd, DimDiff, DimMin, DimMinimum, DimName, DimSub, DimSum, Dynamic, U1,
|
||||
Dim, DimAdd, DimDiff, DimMin, DimMinimum, DimName, DimSub, DimSum, U1,
|
||||
};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use base::dimension::Dynamic;
|
||||
use base::storage::{Storage, StorageMut};
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
use base::DMatrix;
|
||||
@ -35,6 +40,7 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
|
||||
/// Creates a new matrix by extracting the given set of rows from `self`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn select_rows<'a, I>(&self, irows: I) -> MatrixMN<N, Dynamic, C>
|
||||
where I: IntoIterator<Item = &'a usize>,
|
||||
I::IntoIter: ExactSizeIterator + Clone,
|
||||
@ -65,6 +71,7 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
|
||||
/// Creates a new matrix by extracting the given set of columns from `self`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn select_columns<'a, I>(&self, icols: I) -> MatrixMN<N, R, Dynamic>
|
||||
where I: IntoIterator<Item = &'a usize>,
|
||||
I::IntoIter: ExactSizeIterator,
|
||||
@ -295,6 +302,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
/// Removes `n` consecutive columns from this matrix, starting with the `i`-th (included).
|
||||
#[inline]
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn remove_columns(self, i: usize, n: usize) -> MatrixMN<N, R, Dynamic>
|
||||
where
|
||||
C: DimSub<Dynamic, Output = Dynamic>,
|
||||
@ -377,6 +385,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
/// Removes `n` consecutive rows from this matrix, starting with the `i`-th (included).
|
||||
#[inline]
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn remove_rows(self, i: usize, n: usize) -> MatrixMN<N, Dynamic, C>
|
||||
where
|
||||
R: DimSub<Dynamic, Output = Dynamic>,
|
||||
@ -454,6 +463,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
/// Inserts `n` columns filled with `val` starting at the `i-th` position.
|
||||
#[inline]
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn insert_columns(self, i: usize, n: usize, val: N) -> MatrixMN<N, R, Dynamic>
|
||||
where
|
||||
C: DimAdd<Dynamic, Output = Dynamic>,
|
||||
@ -531,6 +541,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
|
||||
/// Inserts `n` rows filled with `val` starting at the `i-th` position.
|
||||
#[inline]
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn insert_rows(self, i: usize, n: usize, val: N) -> MatrixMN<N, Dynamic, C>
|
||||
where
|
||||
R: DimAdd<Dynamic, Output = Dynamic>,
|
||||
@ -596,6 +607,29 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
self.resize_generic(Dynamic::new(new_nrows), Dynamic::new(new_ncols), val)
|
||||
}
|
||||
|
||||
/// Resizes this matrix vertically, i.e., so that it contains `new_nrows` rows while keeping the same number of columns.
|
||||
///
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
/// rows than `self`, then the extra rows are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_vertically(self, new_nrows: usize, val: N) -> MatrixMN<N, Dynamic, C>
|
||||
where DefaultAllocator: Reallocator<N, R, C, Dynamic, C> {
|
||||
let ncols = self.data.shape().1;
|
||||
self.resize_generic(Dynamic::new(new_nrows), ncols, val)
|
||||
}
|
||||
|
||||
/// Resizes this matrix horizontally, i.e., so that it contains `new_ncolumns` columns while keeping the same number of columns.
|
||||
///
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
/// columns than `self`, then the extra columns are filled with `val`.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_horizontally(self, new_ncols: usize, val: N) -> MatrixMN<N, R, Dynamic>
|
||||
where DefaultAllocator: Reallocator<N, R, C, R, Dynamic> {
|
||||
let nrows = self.data.shape().0;
|
||||
self.resize_generic(nrows, Dynamic::new(new_ncols), val)
|
||||
}
|
||||
|
||||
|
||||
/// Resizes this matrix so that it contains `R2::value()` rows and `C2::value()` columns.
|
||||
///
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
@ -673,6 +707,61 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar> DMatrix<N> {
|
||||
/// Resizes this matrix in-place.
|
||||
///
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
|
||||
///
|
||||
/// Defined only for owned fully-dynamic matrices, i.e., `DMatrix`.
|
||||
pub fn resize_mut(&mut self, new_nrows: usize, new_ncols: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, Dynamic, Dynamic, Dynamic, Dynamic> {
|
||||
let placeholder = unsafe { Self::new_uninitialized(0, 0) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
let new = old.resize(new_nrows, new_ncols, val);
|
||||
let _ = mem::replace(self, new);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar, C: Dim> MatrixMN<N, Dynamic, C>
|
||||
where DefaultAllocator: Allocator<N, Dynamic, C> {
|
||||
/// Changes the number of rows of this matrix in-place.
|
||||
///
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
/// rows than `self`, then the extra rows are filled with `val`.
|
||||
///
|
||||
/// Defined only for owned matrices with a dynamic number of rows (for example, `DVector`).
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_vertically_mut(&mut self, new_nrows: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, Dynamic, C, Dynamic, C> {
|
||||
let placeholder = unsafe { Self::new_uninitialized_generic(Dynamic::new(0), self.data.shape().1) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
let new = old.resize_vertically(new_nrows, val);
|
||||
let _ = mem::replace(self, new);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N: Scalar, R: Dim> MatrixMN<N, R, Dynamic>
|
||||
where DefaultAllocator: Allocator<N, R, Dynamic> {
|
||||
/// Changes the number of column of this matrix in-place.
|
||||
///
|
||||
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
|
||||
/// columns than `self`, then the extra columns are filled with `val`.
|
||||
///
|
||||
/// Defined only for owned matrices with a dynamic number of columns (for example, `DVector`).
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
pub fn resize_horizontally_mut(&mut self, new_ncols: usize, val: N)
|
||||
where DefaultAllocator: Reallocator<N, R, Dynamic, R, Dynamic> {
|
||||
let placeholder = unsafe { Self::new_uninitialized_generic(self.data.shape().0, Dynamic::new(0)) };
|
||||
let old = mem::replace(self, placeholder);
|
||||
let new = old.resize_horizontally(new_ncols, val);
|
||||
let _ = mem::replace(self, new);
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn compress_rows<N: Scalar>(
|
||||
data: &mut [N],
|
||||
nrows: usize,
|
||||
@ -753,6 +842,7 @@ unsafe fn extend_rows<N: Scalar>(
|
||||
|
||||
/// Extend the number of columns of the `Matrix` with elements from
|
||||
/// a given iterator.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N, R, S> Extend<N> for Matrix<N, R, Dynamic, S>
|
||||
where
|
||||
N: Scalar,
|
||||
@ -800,6 +890,7 @@ where
|
||||
|
||||
/// Extend the number of rows of the `Vector` with elements from
|
||||
/// a given iterator.
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N, S> Extend<N> for Matrix<N, Dynamic, U1, S>
|
||||
where
|
||||
N: Scalar,
|
||||
@ -820,6 +911,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(any(feature = "std", feature = "alloc"))]
|
||||
impl<N, R, S, RV, SV> Extend<Vector<N, RV, SV>> for Matrix<N, R, Dynamic, S>
|
||||
where
|
||||
N: Scalar,
|
||||
|
@ -6,7 +6,7 @@ use num::{One, Zero};
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
|
||||
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, ClosedAdd, ClosedMul,
|
||||
ClosedNeg, Field, Identity, Inverse, JoinSemilattice, Lattice, MeetSemilattice, Module,
|
||||
ClosedNeg, Field, Identity, TwoSidedInverse, JoinSemilattice, Lattice, MeetSemilattice, Module,
|
||||
Multiplicative, Real, RingCommutative,
|
||||
};
|
||||
use alga::linear::{
|
||||
@ -45,18 +45,18 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N, R: DimName, C: DimName> Inverse<Additive> for MatrixMN<N, R, C>
|
||||
impl<N, R: DimName, C: DimName> TwoSidedInverse<Additive> for MatrixMN<N, R, C>
|
||||
where
|
||||
N: Scalar + ClosedNeg,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
#[inline]
|
||||
fn inverse(&self) -> MatrixMN<N, R, C> {
|
||||
fn two_sided_inverse(&self) -> MatrixMN<N, R, C> {
|
||||
-self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
*self = -self.clone()
|
||||
}
|
||||
}
|
||||
|
@ -4,9 +4,9 @@ use std::slice;
|
||||
|
||||
use base::allocator::Allocator;
|
||||
use base::default_allocator::DefaultAllocator;
|
||||
use base::dimension::{Dim, DimName, Dynamic, U1};
|
||||
use base::dimension::{Dim, DimName, Dynamic, U1, IsNotStaticOne};
|
||||
use base::iter::MatrixIter;
|
||||
use base::storage::{Owned, Storage, StorageMut};
|
||||
use base::storage::{Owned, Storage, StorageMut, ContiguousStorage, ContiguousStorageMut};
|
||||
use base::{Matrix, Scalar};
|
||||
|
||||
macro_rules! slice_storage_impl(
|
||||
@ -91,7 +91,8 @@ slice_storage_impl!("A mutable matrix data storage for mutable matrix slice. Onl
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Copy
|
||||
for SliceStorage<'a, N, R, C, RStride, CStride>
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Clone
|
||||
for SliceStorage<'a, N, R, C, RStride, CStride>
|
||||
@ -146,8 +147,6 @@ macro_rules! storage_impl(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#[inline]
|
||||
fn into_owned(self) -> Owned<N, R, C>
|
||||
where DefaultAllocator: Allocator<N, R, C> {
|
||||
@ -199,6 +198,14 @@ unsafe impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> StorageMu
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorage<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
|
||||
unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorageMut<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
|
||||
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorage<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
|
||||
unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorageMut<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
#[inline]
|
||||
fn assert_slice_index(
|
||||
@ -859,3 +866,25 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
self.slice_range_mut(.., cols)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<'a, N, R, C, RStride, CStride> From<MatrixSliceMut<'a, N, R, C, RStride, CStride>>
|
||||
for MatrixSlice<'a, N, R, C, RStride, CStride>
|
||||
where
|
||||
N: Scalar,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
RStride: Dim,
|
||||
CStride: Dim,
|
||||
{
|
||||
fn from(slice_mut: MatrixSliceMut<'a, N, R, C, RStride, CStride>) -> Self {
|
||||
let data = SliceStorage {
|
||||
ptr: slice_mut.data.ptr,
|
||||
shape: slice_mut.data.shape,
|
||||
strides: slice_mut.data.strides,
|
||||
_phantoms: PhantomData,
|
||||
};
|
||||
|
||||
unsafe { Matrix::from_data_statically_unchecked(data) }
|
||||
}
|
||||
}
|
@ -761,7 +761,7 @@ where
|
||||
}
|
||||
|
||||
impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Returns the absolute value of the coefficient with the largest absolute value.
|
||||
/// Returns the absolute value of the component with the largest absolute value.
|
||||
#[inline]
|
||||
pub fn amax(&self) -> N {
|
||||
let mut max = N::zero();
|
||||
@ -777,7 +777,7 @@ impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matri
|
||||
max
|
||||
}
|
||||
|
||||
/// Returns the absolute value of the coefficient with the smallest absolute value.
|
||||
/// Returns the absolute value of the component with the smallest absolute value.
|
||||
#[inline]
|
||||
pub fn amin(&self) -> N {
|
||||
let mut it = self.iter();
|
||||
@ -796,4 +796,42 @@ impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matri
|
||||
|
||||
min
|
||||
}
|
||||
|
||||
/// Returns the component with the largest value.
|
||||
#[inline]
|
||||
pub fn max(&self) -> N {
|
||||
let mut it = self.iter();
|
||||
let mut max = it
|
||||
.next()
|
||||
.expect("max: empty matrices not supported.");
|
||||
|
||||
for e in it {
|
||||
let ae = e;
|
||||
|
||||
if ae > max {
|
||||
max = ae;
|
||||
}
|
||||
}
|
||||
|
||||
*max
|
||||
}
|
||||
|
||||
/// Returns the component with the smallest value.
|
||||
#[inline]
|
||||
pub fn min(&self) -> N {
|
||||
let mut it = self.iter();
|
||||
let mut min = it
|
||||
.next()
|
||||
.expect("min: empty matrices not supported.");
|
||||
|
||||
for e in it {
|
||||
let ae = e;
|
||||
|
||||
if ae < min {
|
||||
min = ae;
|
||||
}
|
||||
}
|
||||
|
||||
*min
|
||||
}
|
||||
}
|
||||
|
@ -166,7 +166,7 @@ where DefaultAllocator: Allocator<N, D>
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse_mut(&mut self) {
|
||||
self.rotation.inverse_mut();
|
||||
self.rotation.two_sided_inverse_mut();
|
||||
self.translation.inverse_mut();
|
||||
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||||
AbstractSemigroup, Id, Identity, Inverse, Multiplicative, Real,
|
||||
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, Real,
|
||||
};
|
||||
use alga::linear::Isometry as AlgaIsometry;
|
||||
use alga::linear::{
|
||||
@ -30,18 +30,18 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, D: DimName, R> Inverse<Multiplicative> for Isometry<N, D, R>
|
||||
impl<N: Real, D: DimName, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
}
|
||||
|
@ -16,7 +16,7 @@ use base::{DefaultAllocator, Vector2, Vector3};
|
||||
|
||||
use geometry::{
|
||||
Isometry, Point, Point3, Rotation, Rotation2, Rotation3, Translation, UnitComplex,
|
||||
UnitQuaternion,
|
||||
UnitQuaternion, Translation2, Translation3
|
||||
};
|
||||
|
||||
impl<N: Real, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R>
|
||||
@ -129,6 +129,18 @@ impl<N: Real> Isometry<N, U2, Rotation2<N>> {
|
||||
Rotation::<N, U2>::new(angle),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a new isometry from the given translation coordinates.
|
||||
#[inline]
|
||||
pub fn translation(x: N, y: N) -> Self {
|
||||
Self::new(Vector2::new(x, y), N::zero())
|
||||
}
|
||||
|
||||
/// Creates a new isometry from the given rotation angle.
|
||||
#[inline]
|
||||
pub fn rotation(angle: N) -> Self {
|
||||
Self::new(Vector2::zeros(), angle)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real> Isometry<N, U2, UnitComplex<N>> {
|
||||
@ -152,6 +164,18 @@ impl<N: Real> Isometry<N, U2, UnitComplex<N>> {
|
||||
UnitComplex::from_angle(angle),
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates a new isometry from the given translation coordinates.
|
||||
#[inline]
|
||||
pub fn translation(x: N, y: N) -> Self {
|
||||
Self::from_parts(Translation2::new(x, y), UnitComplex::identity())
|
||||
}
|
||||
|
||||
/// Creates a new isometry from the given rotation angle.
|
||||
#[inline]
|
||||
pub fn rotation(angle: N) -> Self {
|
||||
Self::new(Vector2::zeros(), angle)
|
||||
}
|
||||
}
|
||||
|
||||
// 3D rotation.
|
||||
@ -189,6 +213,18 @@ macro_rules! isometry_construction_impl(
|
||||
$RotId::<$($RotParams),*>::from_scaled_axis(axisangle))
|
||||
}
|
||||
|
||||
/// Creates a new isometry from the given translation coordinates.
|
||||
#[inline]
|
||||
pub fn translation(x: N, y: N, z: N) -> Self {
|
||||
Self::from_parts(Translation3::new(x, y, z), $RotId::identity())
|
||||
}
|
||||
|
||||
/// Creates a new isometry from the given rotation angle.
|
||||
#[inline]
|
||||
pub fn rotation(axisangle: Vector3<N>) -> Self {
|
||||
Self::new(Vector3::zeros(), axisangle)
|
||||
}
|
||||
|
||||
/// Creates an isometry that corresponds to the local frame of an observer standing at the
|
||||
/// point `eye` and looking toward `target`.
|
||||
///
|
||||
|
@ -200,8 +200,8 @@ isometry_binop_assign_impl_all!(
|
||||
DivAssign, div_assign;
|
||||
self: Isometry<N, D, R>, rhs: R;
|
||||
// FIXME: don't invert explicitly?
|
||||
[val] => *self *= rhs.inverse();
|
||||
[ref] => *self *= rhs.inverse();
|
||||
[val] => *self *= rhs.two_sided_inverse();
|
||||
[ref] => *self *= rhs.two_sided_inverse();
|
||||
);
|
||||
|
||||
// Isometry × R
|
||||
|
@ -37,6 +37,7 @@ mod translation_alga;
|
||||
mod translation_alias;
|
||||
mod translation_construction;
|
||||
mod translation_conversion;
|
||||
mod translation_coordinates;
|
||||
mod translation_ops;
|
||||
|
||||
mod isometry;
|
||||
|
@ -2,7 +2,7 @@ use num::Zero;
|
||||
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
|
||||
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, Id, Identity, Inverse, Module,
|
||||
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, Id, Identity, TwoSidedInverse, Module,
|
||||
Multiplicative, Real,
|
||||
};
|
||||
use alga::linear::{
|
||||
@ -42,9 +42,9 @@ impl<N: Real> AbstractMagma<Additive> for Quaternion<N> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real> Inverse<Additive> for Quaternion<N> {
|
||||
impl<N: Real> TwoSidedInverse<Additive> for Quaternion<N> {
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
-self
|
||||
}
|
||||
}
|
||||
@ -173,14 +173,14 @@ impl<N: Real> AbstractMagma<Multiplicative> for UnitQuaternion<N> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real> Inverse<Multiplicative> for UnitQuaternion<N> {
|
||||
impl<N: Real> TwoSidedInverse<Multiplicative> for UnitQuaternion<N> {
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||||
AbstractSemigroup, Id, Identity, Inverse, Multiplicative, Real,
|
||||
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, Real,
|
||||
};
|
||||
use alga::linear::{
|
||||
self, AffineTransformation, DirectIsometry, Isometry, OrthogonalTransformation,
|
||||
@ -27,16 +27,16 @@ where DefaultAllocator: Allocator<N, D, D>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, D: DimName> Inverse<Multiplicative> for Rotation<N, D>
|
||||
impl<N: Real, D: DimName> TwoSidedInverse<Multiplicative> for Rotation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
self.transpose()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
self.transpose_mut()
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||||
AbstractSemigroup, Identity, Inverse, Multiplicative, Real,
|
||||
AbstractSemigroup, Identity, TwoSidedInverse, Multiplicative, Real,
|
||||
};
|
||||
use alga::linear::Similarity as AlgaSimilarity;
|
||||
use alga::linear::{AffineTransformation, ProjectiveTransformation, Rotation, Transformation};
|
||||
@ -27,18 +27,18 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, D: DimName, R> Inverse<Multiplicative> for Similarity<N, D, R>
|
||||
impl<N: Real, D: DimName, R> TwoSidedInverse<Multiplicative> for Similarity<N, D, R>
|
||||
where
|
||||
R: Rotation<Point<N, D>>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
{
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
}
|
||||
|
@ -222,8 +222,8 @@ similarity_binop_assign_impl_all!(
|
||||
DivAssign, div_assign;
|
||||
self: Similarity<N, D, R>, rhs: R;
|
||||
// FIXME: don't invert explicitly?
|
||||
[val] => *self *= rhs.inverse();
|
||||
[ref] => *self *= rhs.inverse();
|
||||
[val] => *self *= rhs.two_sided_inverse();
|
||||
[ref] => *self *= rhs.two_sided_inverse();
|
||||
);
|
||||
|
||||
// Similarity × R
|
||||
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||||
AbstractSemigroup, Identity, Inverse, Multiplicative, Real,
|
||||
AbstractSemigroup, Identity, TwoSidedInverse, Multiplicative, Real,
|
||||
};
|
||||
use alga::linear::{ProjectiveTransformation, Transformation};
|
||||
|
||||
@ -26,18 +26,18 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, D: DimNameAdd<U1>, C> Inverse<Multiplicative> for Transform<N, D, C>
|
||||
impl<N: Real, D: DimNameAdd<U1>, C> TwoSidedInverse<Multiplicative> for Transform<N, D, C>
|
||||
where
|
||||
C: SubTCategoryOf<TProjective>,
|
||||
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||||
{
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
self.clone().inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
}
|
||||
@ -116,12 +116,12 @@ where
|
||||
{
|
||||
#[inline]
|
||||
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
|
||||
self.inverse() * pt
|
||||
self.two_sided_inverse() * pt
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
|
||||
self.inverse() * v
|
||||
self.two_sided_inverse() * v
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||||
AbstractSemigroup, Id, Identity, Inverse, Multiplicative, Real,
|
||||
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, Real,
|
||||
};
|
||||
use alga::linear::Translation as AlgaTranslation;
|
||||
use alga::linear::{
|
||||
@ -28,16 +28,16 @@ where DefaultAllocator: Allocator<N, D>
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, D: DimName> Inverse<Multiplicative> for Translation<N, D>
|
||||
impl<N: Real, D: DimName> TwoSidedInverse<Multiplicative> for Translation<N, D>
|
||||
where DefaultAllocator: Allocator<N, D>
|
||||
{
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
}
|
||||
|
44
src/geometry/translation_coordinates.rs
Normal file
44
src/geometry/translation_coordinates.rs
Normal file
@ -0,0 +1,44 @@
|
||||
use std::mem;
|
||||
use std::ops::{Deref, DerefMut};
|
||||
|
||||
use base::allocator::Allocator;
|
||||
use base::coordinates::{X, XY, XYZ, XYZW, XYZWA, XYZWAB};
|
||||
use base::dimension::{U1, U2, U3, U4, U5, U6};
|
||||
use base::{DefaultAllocator, Scalar};
|
||||
|
||||
use geometry::Translation;
|
||||
|
||||
/*
|
||||
*
|
||||
* Give coordinates to Translation{1 .. 6}
|
||||
*
|
||||
*/
|
||||
|
||||
macro_rules! deref_impl(
|
||||
($D: ty, $Target: ident $(, $comps: ident)*) => {
|
||||
impl<N: Scalar> Deref for Translation<N, $D>
|
||||
where DefaultAllocator: Allocator<N, $D> {
|
||||
type Target = $Target<N>;
|
||||
|
||||
#[inline]
|
||||
fn deref(&self) -> &Self::Target {
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar> DerefMut for Translation<N, $D>
|
||||
where DefaultAllocator: Allocator<N, $D> {
|
||||
#[inline]
|
||||
fn deref_mut(&mut self) -> &mut Self::Target {
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
deref_impl!(U1, X, x);
|
||||
deref_impl!(U2, XY, x, y);
|
||||
deref_impl!(U3, XYZ, x, y, z);
|
||||
deref_impl!(U4, XYZW, x, y, z, w);
|
||||
deref_impl!(U5, XYZWA, x, y, z, w, a);
|
||||
deref_impl!(U6, XYZWAB, x, y, z, w, a, b);
|
@ -1,6 +1,6 @@
|
||||
use alga::general::{
|
||||
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||||
AbstractSemigroup, Id, Identity, Inverse, Multiplicative, Real,
|
||||
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, Real,
|
||||
};
|
||||
use alga::linear::{
|
||||
AffineTransformation, DirectIsometry, Isometry, OrthogonalTransformation,
|
||||
@ -31,14 +31,14 @@ impl<N: Real> AbstractMagma<Multiplicative> for UnitComplex<N> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real> Inverse<Multiplicative> for UnitComplex<N> {
|
||||
impl<N: Real> TwoSidedInverse<Multiplicative> for UnitComplex<N> {
|
||||
#[inline]
|
||||
fn inverse(&self) -> Self {
|
||||
fn two_sided_inverse(&self) -> Self {
|
||||
self.inverse()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) {
|
||||
fn two_sided_inverse_mut(&mut self) {
|
||||
self.inverse_mut()
|
||||
}
|
||||
}
|
||||
|
16
src/io/matrix_market.pest
Normal file
16
src/io/matrix_market.pest
Normal file
@ -0,0 +1,16 @@
|
||||
WHITESPACE = _{ " " }
|
||||
|
||||
Comments = _{ "%" ~ (!NEWLINE ~ ANY)* }
|
||||
Header = { "%%" ~ (!NEWLINE ~ ANY)* }
|
||||
Shape = { Dimension ~ Dimension ~ Dimension }
|
||||
Document = {
|
||||
SOI ~
|
||||
NEWLINE* ~
|
||||
Header ~
|
||||
(NEWLINE ~ Comments)* ~
|
||||
(NEWLINE ~ Shape) ~
|
||||
(NEWLINE ~ Entry?)*
|
||||
}
|
||||
Dimension = @{ ASCII_DIGIT+ }
|
||||
Value = @{ ("+" | "-")? ~ NUMBER+ ~ ("." ~ NUMBER+)? ~ ("e" ~ ("+" | "-")? ~ NUMBER+)? }
|
||||
Entry = { Dimension ~ Dimension ~ Value }
|
53
src/io/matrix_market.rs
Normal file
53
src/io/matrix_market.rs
Normal file
@ -0,0 +1,53 @@
|
||||
use std::fs;
|
||||
use std::path::Path;
|
||||
|
||||
use pest::Parser;
|
||||
use sparse::CsMatrix;
|
||||
use Real;
|
||||
|
||||
#[derive(Parser)]
|
||||
#[grammar = "io/matrix_market.pest"]
|
||||
struct MatrixMarketParser;
|
||||
|
||||
// FIXME: return an Error instead of an Option.
|
||||
/// Parses a Matrix Market file at the given path, and returns the corresponding sparse matrix.
|
||||
pub fn cs_matrix_from_matrix_market<N: Real, P: AsRef<Path>>(path: P) -> Option<CsMatrix<N>> {
|
||||
let file = fs::read_to_string(path).ok()?;
|
||||
cs_matrix_from_matrix_market_str(&file)
|
||||
}
|
||||
|
||||
// FIXME: return an Error instead of an Option.
|
||||
/// Parses a Matrix Market file described by the given string, and returns the corresponding sparse matrix.
|
||||
pub fn cs_matrix_from_matrix_market_str<N: Real>(data: &str) -> Option<CsMatrix<N>> {
|
||||
let file = MatrixMarketParser::parse(Rule::Document, data)
|
||||
.unwrap()
|
||||
.next()?;
|
||||
let mut shape = (0, 0, 0);
|
||||
let mut rows: Vec<usize> = Vec::new();
|
||||
let mut cols: Vec<usize> = Vec::new();
|
||||
let mut data: Vec<N> = Vec::new();
|
||||
|
||||
for line in file.into_inner() {
|
||||
match line.as_rule() {
|
||||
Rule::Header => {}
|
||||
Rule::Shape => {
|
||||
let mut inner = line.into_inner();
|
||||
shape.0 = inner.next()?.as_str().parse::<usize>().ok()?;
|
||||
shape.1 = inner.next()?.as_str().parse::<usize>().ok()?;
|
||||
shape.2 = inner.next()?.as_str().parse::<usize>().ok()?;
|
||||
}
|
||||
Rule::Entry => {
|
||||
let mut inner = line.into_inner();
|
||||
// NOTE: indices are 1-based.
|
||||
rows.push(inner.next()?.as_str().parse::<usize>().ok()? - 1);
|
||||
cols.push(inner.next()?.as_str().parse::<usize>().ok()? - 1);
|
||||
data.push(::convert(inner.next()?.as_str().parse::<f64>().ok()?));
|
||||
}
|
||||
_ => return None, // FIXME: return an Err instead.
|
||||
}
|
||||
}
|
||||
|
||||
Some(CsMatrix::from_triplet(
|
||||
shape.0, shape.1, &rows, &cols, &data,
|
||||
))
|
||||
}
|
5
src/io/mod.rs
Normal file
5
src/io/mod.rs
Normal file
@ -0,0 +1,5 @@
|
||||
//! Parsers for various matrix formats.
|
||||
|
||||
pub use self::matrix_market::{cs_matrix_from_matrix_market, cs_matrix_from_matrix_market_str};
|
||||
|
||||
mod matrix_market;
|
26
src/lib.rs
26
src/lib.rs
@ -81,10 +81,12 @@ an optimized set of tools for computer graphics and physics. Those features incl
|
||||
#![deny(non_upper_case_globals)]
|
||||
#![deny(unused_qualifications)]
|
||||
#![deny(unused_results)]
|
||||
#![deny(missing_docs)]
|
||||
#![warn(missing_docs)] // FIXME: deny this
|
||||
#![warn(incoherent_fundamental_impls)]
|
||||
#![doc(html_favicon_url = "http://nalgebra.org/img/favicon.ico",
|
||||
html_root_url = "http://nalgebra.org/rustdoc")]
|
||||
#![doc(
|
||||
html_favicon_url = "http://nalgebra.org/img/favicon.ico",
|
||||
html_root_url = "http://nalgebra.org/rustdoc"
|
||||
)]
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#![cfg_attr(all(feature = "alloc", not(feature = "std")), feature(alloc))]
|
||||
|
||||
@ -121,11 +123,21 @@ extern crate alloc;
|
||||
#[cfg(not(feature = "std"))]
|
||||
extern crate core as std;
|
||||
|
||||
#[cfg(feature = "io")]
|
||||
extern crate pest;
|
||||
#[macro_use]
|
||||
#[cfg(feature = "io")]
|
||||
extern crate pest_derive;
|
||||
|
||||
pub mod base;
|
||||
#[cfg(feature = "debug")]
|
||||
pub mod debug;
|
||||
pub mod geometry;
|
||||
#[cfg(feature = "io")]
|
||||
pub mod io;
|
||||
pub mod linalg;
|
||||
#[cfg(feature = "sparse")]
|
||||
pub mod sparse;
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
#[deprecated(
|
||||
@ -135,11 +147,13 @@ pub use base as core;
|
||||
pub use base::*;
|
||||
pub use geometry::*;
|
||||
pub use linalg::*;
|
||||
#[cfg(feature = "sparse")]
|
||||
pub use sparse::*;
|
||||
|
||||
use std::cmp::{self, Ordering, PartialOrd};
|
||||
|
||||
use alga::general::{
|
||||
Additive, AdditiveGroup, Identity, Inverse, JoinSemilattice, Lattice, MeetSemilattice,
|
||||
Additive, AdditiveGroup, Identity, TwoSidedInverse, JoinSemilattice, Lattice, MeetSemilattice,
|
||||
Multiplicative, SupersetOf,
|
||||
};
|
||||
use alga::linear::SquareMatrix as AlgaSquareMatrix;
|
||||
@ -413,8 +427,8 @@ pub fn try_inverse<M: AlgaSquareMatrix>(m: &M) -> Option<M> {
|
||||
///
|
||||
/// * [`try_inverse`](fn.try_inverse.html)
|
||||
#[inline]
|
||||
pub fn inverse<M: Inverse<Multiplicative>>(m: &M) -> M {
|
||||
m.inverse()
|
||||
pub fn inverse<M: TwoSidedInverse<Multiplicative>>(m: &M) -> M {
|
||||
m.two_sided_inverse()
|
||||
}
|
||||
|
||||
/*
|
||||
|
517
src/sparse/cs_matrix.rs
Normal file
517
src/sparse/cs_matrix.rs
Normal file
@ -0,0 +1,517 @@
|
||||
use alga::general::ClosedAdd;
|
||||
use num::Zero;
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::Range;
|
||||
use std::slice;
|
||||
|
||||
use allocator::Allocator;
|
||||
use sparse::cs_utils;
|
||||
use {
|
||||
DefaultAllocator, Dim, Dynamic, Scalar, Vector, VectorN, U1
|
||||
};
|
||||
|
||||
pub struct ColumnEntries<'a, N> {
|
||||
curr: usize,
|
||||
i: &'a [usize],
|
||||
v: &'a [N],
|
||||
}
|
||||
|
||||
impl<'a, N> ColumnEntries<'a, N> {
|
||||
#[inline]
|
||||
pub fn new(i: &'a [usize], v: &'a [N]) -> Self {
|
||||
assert_eq!(i.len(), v.len());
|
||||
ColumnEntries { curr: 0, i, v }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Copy> Iterator for ColumnEntries<'a, N> {
|
||||
type Item = (usize, N);
|
||||
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<(usize, N)> {
|
||||
if self.curr >= self.i.len() {
|
||||
None
|
||||
} else {
|
||||
let res = Some((unsafe { *self.i.get_unchecked(self.curr) }, unsafe {
|
||||
*self.v.get_unchecked(self.curr)
|
||||
}));
|
||||
self.curr += 1;
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: this structure exists for now only because impl trait
|
||||
// cannot be used for trait method return types.
|
||||
/// Trait for iterable compressed-column matrix storage.
|
||||
pub trait CsStorageIter<'a, N, R, C = U1> {
|
||||
/// Iterator through all the rows of a specific columns.
|
||||
///
|
||||
/// The elements are given as a tuple (row_index, value).
|
||||
type ColumnEntries: Iterator<Item = (usize, N)>;
|
||||
/// Iterator through the row indices of a specific column.
|
||||
type ColumnRowIndices: Iterator<Item = usize>;
|
||||
|
||||
/// Iterates through all the row indices of the j-th column.
|
||||
fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices;
|
||||
#[inline(always)]
|
||||
/// Iterates through all the entries of the j-th column.
|
||||
fn column_entries(&'a self, j: usize) -> Self::ColumnEntries;
|
||||
}
|
||||
|
||||
/// Trait for mutably iterable compressed-column sparse matrix storage.
|
||||
pub trait CsStorageIterMut<'a, N: 'a, R, C = U1> {
|
||||
/// Mutable iterator through all the values of the sparse matrix.
|
||||
type ValuesMut: Iterator<Item = &'a mut N>;
|
||||
/// Mutable iterator through all the rows of a specific columns.
|
||||
///
|
||||
/// The elements are given as a tuple (row_index, value).
|
||||
type ColumnEntriesMut: Iterator<Item = (usize, &'a mut N)>;
|
||||
|
||||
/// A mutable iterator through the values buffer of the sparse matrix.
|
||||
fn values_mut(&'a mut self) -> Self::ValuesMut;
|
||||
/// Iterates mutably through all the entries of the j-th column.
|
||||
fn column_entries_mut(&'a mut self, j: usize) -> Self::ColumnEntriesMut;
|
||||
}
|
||||
|
||||
/// Trait for compressed column sparse matrix storage.
|
||||
pub trait CsStorage<N, R, C = U1>: for<'a> CsStorageIter<'a, N, R, C> {
|
||||
/// The shape of the stored matrix.
|
||||
fn shape(&self) -> (R, C);
|
||||
/// Retrieve the i-th row index of the underlying row index buffer.
|
||||
///
|
||||
/// No bound-checking is performed.
|
||||
unsafe fn row_index_unchecked(&self, i: usize) -> usize;
|
||||
/// The i-th value on the contiguous value buffer of this storage.
|
||||
///
|
||||
/// No bound-checking is performed.
|
||||
unsafe fn get_value_unchecked(&self, i: usize) -> &N;
|
||||
/// The i-th value on the contiguous value buffer of this storage.
|
||||
fn get_value(&self, i: usize) -> &N;
|
||||
/// Retrieve the i-th row index of the underlying row index buffer.
|
||||
fn row_index(&self, i: usize) -> usize;
|
||||
/// The value indices for the `i`-th column.
|
||||
fn column_range(&self, i: usize) -> Range<usize>;
|
||||
/// The size of the value buffer (i.e. the entries known as possibly being non-zero).
|
||||
fn len(&self) -> usize;
|
||||
}
|
||||
|
||||
/// Trait for compressed column sparse matrix mutable storage.
|
||||
pub trait CsStorageMut<N, R, C = U1>:
|
||||
CsStorage<N, R, C> + for<'a> CsStorageIterMut<'a, N, R, C>
|
||||
{
|
||||
}
|
||||
|
||||
/// A storage of column-compressed sparse matrix based on a Vec.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub struct CsVecStorage<N: Scalar, R: Dim, C: Dim>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
pub(crate) shape: (R, C),
|
||||
pub(crate) p: VectorN<usize, C>,
|
||||
pub(crate) i: Vec<usize>,
|
||||
pub(crate) vals: Vec<N>,
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
/// The value buffer of this storage.
|
||||
pub fn values(&self) -> &[N] {
|
||||
&self.vals
|
||||
}
|
||||
|
||||
/// The column shifts buffer.
|
||||
pub fn p(&self) -> &[usize] {
|
||||
self.p.as_slice()
|
||||
}
|
||||
|
||||
/// The row index buffers.
|
||||
pub fn i(&self) -> &[usize] {
|
||||
&self.i
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C> {}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIter<'a, N, R, C> for CsVecStorage<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
type ColumnEntries = ColumnEntries<'a, N>;
|
||||
type ColumnRowIndices = iter::Cloned<slice::Iter<'a, usize>>;
|
||||
|
||||
#[inline]
|
||||
fn column_entries(&'a self, j: usize) -> Self::ColumnEntries {
|
||||
let rng = self.column_range(j);
|
||||
ColumnEntries::new(&self.i[rng.clone()], &self.vals[rng])
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices {
|
||||
let rng = self.column_range(j);
|
||||
self.i[rng.clone()].iter().cloned()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsStorage<N, R, C> for CsVecStorage<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
#[inline]
|
||||
fn shape(&self) -> (R, C) {
|
||||
self.shape
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn len(&self) -> usize {
|
||||
self.vals.len()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn row_index(&self, i: usize) -> usize {
|
||||
self.i[i]
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn row_index_unchecked(&self, i: usize) -> usize {
|
||||
*self.i.get_unchecked(i)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn get_value_unchecked(&self, i: usize) -> &N {
|
||||
self.vals.get_unchecked(i)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_value(&self, i: usize) -> &N {
|
||||
&self.vals[i]
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn column_range(&self, j: usize) -> Range<usize> {
|
||||
let end = if j + 1 == self.p.len() {
|
||||
self.len()
|
||||
} else {
|
||||
self.p[j + 1]
|
||||
};
|
||||
|
||||
self.p[j]..end
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIterMut<'a, N, R, C> for CsVecStorage<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
type ValuesMut = slice::IterMut<'a, N>;
|
||||
type ColumnEntriesMut = iter::Zip<iter::Cloned<slice::Iter<'a, usize>>, slice::IterMut<'a, N>>;
|
||||
|
||||
#[inline]
|
||||
fn values_mut(&'a mut self) -> Self::ValuesMut {
|
||||
self.vals.iter_mut()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn column_entries_mut(&'a mut self, j: usize) -> Self::ColumnEntriesMut {
|
||||
let rng = self.column_range(j);
|
||||
self.i[rng.clone()]
|
||||
.iter()
|
||||
.cloned()
|
||||
.zip(self.vals[rng].iter_mut())
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsStorageMut<N, R, C> for CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C>
|
||||
{}
|
||||
|
||||
/*
|
||||
pub struct CsSliceStorage<'a, N: Scalar, R: Dim, C: DimAdd<U1>> {
|
||||
shape: (R, C),
|
||||
p: VectorSlice<usize, DimSum<C, U1>>,
|
||||
i: VectorSlice<usize, Dynamic>,
|
||||
vals: VectorSlice<N, Dynamic>,
|
||||
}*/
|
||||
|
||||
/// A compressed sparse column matrix.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub struct CsMatrix<
|
||||
N: Scalar,
|
||||
R: Dim = Dynamic,
|
||||
C: Dim = Dynamic,
|
||||
S: CsStorage<N, R, C> = CsVecStorage<N, R, C>,
|
||||
> {
|
||||
pub(crate) data: S,
|
||||
_phantoms: PhantomData<(N, R, C)>,
|
||||
}
|
||||
|
||||
/// A column compressed sparse vector.
|
||||
pub type CsVector<N, R = Dynamic, S = CsVecStorage<N, R, U1>> = CsMatrix<N, R, U1, S>;
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsMatrix<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
/// Creates a new compressed sparse column matrix with the specified dimension and
|
||||
/// `nvals` possible non-zero values.
|
||||
pub fn new_uninitialized_generic(nrows: R, ncols: C, nvals: usize) -> Self {
|
||||
let mut i = Vec::with_capacity(nvals);
|
||||
unsafe {
|
||||
i.set_len(nvals);
|
||||
}
|
||||
i.shrink_to_fit();
|
||||
|
||||
let mut vals = Vec::with_capacity(nvals);
|
||||
unsafe {
|
||||
vals.set_len(nvals);
|
||||
}
|
||||
vals.shrink_to_fit();
|
||||
|
||||
CsMatrix {
|
||||
data: CsVecStorage {
|
||||
shape: (nrows, ncols),
|
||||
p: VectorN::zeros_generic(ncols, U1),
|
||||
i,
|
||||
vals,
|
||||
},
|
||||
_phantoms: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
pub(crate) fn from_parts_generic(
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
p: VectorN<usize, C>,
|
||||
i: Vec<usize>,
|
||||
vals: Vec<N>,
|
||||
) -> Self
|
||||
where
|
||||
N: Zero + ClosedAdd,
|
||||
DefaultAllocator: Allocator<N, R>,
|
||||
{
|
||||
assert_eq!(ncols.value(), p.len(), "Invalid inptr size.");
|
||||
assert_eq!(i.len(), vals.len(), "Invalid value size.");
|
||||
|
||||
// Check p.
|
||||
for ptr in &p {
|
||||
assert!(*ptr < i.len(), "Invalid inptr value.");
|
||||
}
|
||||
|
||||
for ptr in p.as_slice().windows(2) {
|
||||
assert!(ptr[0] <= ptr[1], "Invalid inptr ordering.");
|
||||
}
|
||||
|
||||
// Check i.
|
||||
for i in &i {
|
||||
assert!(*i < nrows.value(), "Invalid row ptr value.")
|
||||
}
|
||||
|
||||
let mut res = CsMatrix {
|
||||
data: CsVecStorage {
|
||||
shape: (nrows, ncols),
|
||||
p,
|
||||
i,
|
||||
vals,
|
||||
},
|
||||
_phantoms: PhantomData,
|
||||
};
|
||||
|
||||
// Sort and remove duplicates.
|
||||
res.sort();
|
||||
res.dedup();
|
||||
|
||||
res
|
||||
}*/
|
||||
}
|
||||
|
||||
/*
|
||||
impl<N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
|
||||
pub(crate) fn from_parts(
|
||||
nrows: usize,
|
||||
ncols: usize,
|
||||
p: Vec<usize>,
|
||||
i: Vec<usize>,
|
||||
vals: Vec<N>,
|
||||
) -> Self
|
||||
{
|
||||
let nrows = Dynamic::new(nrows);
|
||||
let ncols = Dynamic::new(ncols);
|
||||
let p = DVector::from_data(VecStorage::new(ncols, U1, p));
|
||||
Self::from_parts_generic(nrows, ncols, p, i, vals)
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||||
pub(crate) fn from_data(data: S) -> Self {
|
||||
CsMatrix {
|
||||
data,
|
||||
_phantoms: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// The size of the data buffer.
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
/// The number of rows of this matrix.
|
||||
pub fn nrows(&self) -> usize {
|
||||
self.data.shape().0.value()
|
||||
}
|
||||
|
||||
/// The number of rows of this matrix.
|
||||
pub fn ncols(&self) -> usize {
|
||||
self.data.shape().1.value()
|
||||
}
|
||||
|
||||
/// The shape of this matrix.
|
||||
pub fn shape(&self) -> (usize, usize) {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
(nrows.value(), ncols.value())
|
||||
}
|
||||
|
||||
/// Whether this matrix is square or not.
|
||||
pub fn is_square(&self) -> bool {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
nrows.value() == ncols.value()
|
||||
}
|
||||
|
||||
/// Should always return `true`.
|
||||
///
|
||||
/// This method is generally used for debugging and should typically not be called in user code.
|
||||
/// This checks that the row inner indices of this matrix are sorted. It takes `O(n)` time,
|
||||
/// where n` is `self.len()`.
|
||||
/// All operations of CSC matrices on nalgebra assume, and will return, sorted indices.
|
||||
/// If at any time this `is_sorted` method returns `false`, then, something went wrong
|
||||
/// and an issue should be open on the nalgebra repository with details on how to reproduce
|
||||
/// this.
|
||||
pub fn is_sorted(&self) -> bool {
|
||||
for j in 0..self.ncols() {
|
||||
let mut curr = None;
|
||||
for idx in self.data.column_row_indices(j) {
|
||||
if let Some(curr) = curr {
|
||||
if idx <= curr {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
curr = Some(idx);
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
/// Computes the transpose of this sparse matrix.
|
||||
pub fn transpose(&self) -> CsMatrix<N, C, R>
|
||||
where DefaultAllocator: Allocator<usize, R> {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
|
||||
let nvals = self.len();
|
||||
let mut res = CsMatrix::new_uninitialized_generic(ncols, nrows, nvals);
|
||||
let mut workspace = Vector::zeros_generic(nrows, U1);
|
||||
|
||||
// Compute p.
|
||||
for i in 0..nvals {
|
||||
let row_id = self.data.row_index(i);
|
||||
workspace[row_id] += 1;
|
||||
}
|
||||
|
||||
let _ = cs_utils::cumsum(&mut workspace, &mut res.data.p);
|
||||
|
||||
// Fill the result.
|
||||
for j in 0..ncols.value() {
|
||||
for (row_id, value) in self.data.column_entries(j) {
|
||||
let shift = workspace[row_id];
|
||||
|
||||
res.data.vals[shift] = value;
|
||||
res.data.i[shift] = j;
|
||||
workspace[row_id] += 1;
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorageMut<N, R, C>> CsMatrix<N, R, C, S> {
|
||||
/// Iterator through all the mutable values of this sparse matrix.
|
||||
#[inline]
|
||||
pub fn values_mut(&mut self) -> impl Iterator<Item = &mut N> {
|
||||
self.data.values_mut()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsMatrix<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C>
|
||||
{
|
||||
pub(crate) fn sort(&mut self)
|
||||
where DefaultAllocator: Allocator<N, R> {
|
||||
// Size = R
|
||||
let nrows = self.data.shape().0;
|
||||
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows, U1) };
|
||||
self.sort_with_workspace(workspace.as_mut_slice());
|
||||
}
|
||||
|
||||
pub(crate) fn sort_with_workspace(&mut self, workspace: &mut [N]) {
|
||||
assert!(
|
||||
workspace.len() >= self.nrows(),
|
||||
"Workspace must be able to hold at least self.nrows() elements."
|
||||
);
|
||||
|
||||
for j in 0..self.ncols() {
|
||||
// Scatter the row in the workspace.
|
||||
for (irow, val) in self.data.column_entries(j) {
|
||||
workspace[irow] = val;
|
||||
}
|
||||
|
||||
// Sort the index vector.
|
||||
let range = self.data.column_range(j);
|
||||
self.data.i[range.clone()].sort();
|
||||
|
||||
// Permute the values too.
|
||||
for (i, irow) in range.clone().zip(self.data.i[range].iter().cloned()) {
|
||||
self.data.vals[i] = workspace[irow];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Remove dupliate entries on a sorted CsMatrix.
|
||||
pub(crate) fn dedup(&mut self)
|
||||
where N: Zero + ClosedAdd {
|
||||
let mut curr_i = 0;
|
||||
|
||||
for j in 0..self.ncols() {
|
||||
let range = self.data.column_range(j);
|
||||
self.data.p[j] = curr_i;
|
||||
|
||||
if range.start != range.end {
|
||||
let mut value = N::zero();
|
||||
let mut irow = self.data.i[range.start];
|
||||
|
||||
for idx in range {
|
||||
let curr_irow = self.data.i[idx];
|
||||
|
||||
if curr_irow == irow {
|
||||
value += self.data.vals[idx];
|
||||
} else {
|
||||
self.data.i[curr_i] = irow;
|
||||
self.data.vals[curr_i] = value;
|
||||
value = self.data.vals[idx];
|
||||
irow = curr_irow;
|
||||
curr_i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle the last entry.
|
||||
self.data.i[curr_i] = irow;
|
||||
self.data.vals[curr_i] = value;
|
||||
curr_i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
self.data.i.truncate(curr_i);
|
||||
self.data.i.shrink_to_fit();
|
||||
self.data.vals.truncate(curr_i);
|
||||
self.data.vals.shrink_to_fit();
|
||||
}
|
||||
}
|
408
src/sparse/cs_matrix_cholesky.rs
Normal file
408
src/sparse/cs_matrix_cholesky.rs
Normal file
@ -0,0 +1,408 @@
|
||||
use std::iter;
|
||||
use std::mem;
|
||||
|
||||
use allocator::Allocator;
|
||||
use sparse::{CsMatrix, CsStorage, CsStorageIter, CsStorageIterMut, CsVecStorage};
|
||||
use {DefaultAllocator, Dim, Real, VectorN, U1};
|
||||
|
||||
/// The cholesky decomposition of a column compressed sparse matrix.
|
||||
pub struct CsCholesky<N: Real, D: Dim>
|
||||
where DefaultAllocator: Allocator<usize, D> + Allocator<N, D>
|
||||
{
|
||||
// Non-zero pattern of the original matrix upper-triangular part.
|
||||
// Unlike the original matrix, the `original_p` array does contain the last sentinel value
|
||||
// equal to `original_i.len()` at the end.
|
||||
original_p: Vec<usize>,
|
||||
original_i: Vec<usize>,
|
||||
// Decomposition result.
|
||||
l: CsMatrix<N, D, D>,
|
||||
// Used only for the pattern.
|
||||
// FIXME: store only the nonzero pattern instead.
|
||||
u: CsMatrix<N, D, D>,
|
||||
ok: bool,
|
||||
// Workspaces.
|
||||
work_x: VectorN<N, D>,
|
||||
work_c: VectorN<usize, D>,
|
||||
}
|
||||
|
||||
impl<N: Real, D: Dim> CsCholesky<N, D>
|
||||
where DefaultAllocator: Allocator<usize, D> + Allocator<N, D>
|
||||
{
|
||||
/// Computes the cholesky decomposition of the sparse matrix `m`.
|
||||
pub fn new(m: &CsMatrix<N, D, D>) -> Self {
|
||||
let mut me = Self::new_symbolic(m);
|
||||
let _ = me.decompose_left_looking(&m.data.vals);
|
||||
me
|
||||
}
|
||||
/// Perform symbolic analysis for the given matrix.
|
||||
///
|
||||
/// This does not access the numerical values of `m`.
|
||||
pub fn new_symbolic(m: &CsMatrix<N, D, D>) -> Self {
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"The matrix `m` must be square to compute its elimination tree."
|
||||
);
|
||||
|
||||
let (l, u) = Self::nonzero_pattern(m);
|
||||
|
||||
// Workspaces.
|
||||
let work_x = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
||||
let work_c = unsafe { VectorN::new_uninitialized_generic(m.data.shape().1, U1) };
|
||||
let mut original_p = m.data.p.as_slice().to_vec();
|
||||
original_p.push(m.data.i.len());
|
||||
|
||||
CsCholesky {
|
||||
original_p,
|
||||
original_i: m.data.i.clone(),
|
||||
l,
|
||||
u,
|
||||
ok: false,
|
||||
work_x,
|
||||
work_c,
|
||||
}
|
||||
}
|
||||
|
||||
/// The lower-triangular matrix of the cholesky decomposition.
|
||||
pub fn l(&self) -> Option<&CsMatrix<N, D, D>> {
|
||||
if self.ok {
|
||||
Some(&self.l)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Extracts the lower-triangular matrix of the cholesky decomposition.
|
||||
pub fn unwrap_l(self) -> Option<CsMatrix<N, D, D>> {
|
||||
if self.ok {
|
||||
Some(self.l)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform a numerical left-looking cholesky decomposition of a matrix with the same structure as the
|
||||
/// one used to initialize `self`, but with different non-zero values provided by `values`.
|
||||
pub fn decompose_left_looking(&mut self, values: &[N]) -> bool {
|
||||
assert!(
|
||||
values.len() >= self.original_i.len(),
|
||||
"The set of values is too small."
|
||||
);
|
||||
|
||||
let n = self.l.nrows();
|
||||
|
||||
// Reset `work_c` to the column pointers of `l`.
|
||||
self.work_c.copy_from(&self.l.data.p);
|
||||
|
||||
unsafe {
|
||||
for k in 0..n {
|
||||
// Scatter the k-th column of the original matrix with the values provided.
|
||||
let range_k =
|
||||
*self.original_p.get_unchecked(k)..*self.original_p.get_unchecked(k + 1);
|
||||
|
||||
*self.work_x.vget_unchecked_mut(k) = N::zero();
|
||||
for p in range_k.clone() {
|
||||
let irow = *self.original_i.get_unchecked(p);
|
||||
|
||||
if irow >= k {
|
||||
*self.work_x.vget_unchecked_mut(irow) = *values.get_unchecked(p);
|
||||
}
|
||||
}
|
||||
|
||||
for j in self.u.data.column_row_indices(k) {
|
||||
let factor = -*self
|
||||
.l
|
||||
.data
|
||||
.vals
|
||||
.get_unchecked(*self.work_c.vget_unchecked(j));
|
||||
*self.work_c.vget_unchecked_mut(j) += 1;
|
||||
|
||||
if j < k {
|
||||
for (z, val) in self.l.data.column_entries(j) {
|
||||
if z >= k {
|
||||
*self.work_x.vget_unchecked_mut(z) += val * factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let diag = *self.work_x.vget_unchecked(k);
|
||||
|
||||
if diag > N::zero() {
|
||||
let denom = diag.sqrt();
|
||||
*self
|
||||
.l
|
||||
.data
|
||||
.vals
|
||||
.get_unchecked_mut(*self.l.data.p.vget_unchecked(k)) = denom;
|
||||
|
||||
for (p, val) in self.l.data.column_entries_mut(k) {
|
||||
*val = *self.work_x.vget_unchecked(p) / denom;
|
||||
*self.work_x.vget_unchecked_mut(p) = N::zero();
|
||||
}
|
||||
} else {
|
||||
self.ok = false;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self.ok = true;
|
||||
true
|
||||
}
|
||||
|
||||
/// Perform a numerical up-looking cholesky decomposition of a matrix with the same structure as the
|
||||
/// one used to initialize `self`, but with different non-zero values provided by `values`.
|
||||
pub fn decompose_up_looking(&mut self, values: &[N]) -> bool {
|
||||
assert!(
|
||||
values.len() >= self.original_i.len(),
|
||||
"The set of values is too small."
|
||||
);
|
||||
|
||||
// Reset `work_c` to the column pointers of `l`.
|
||||
self.work_c.copy_from(&self.l.data.p);
|
||||
|
||||
// Perform the decomposition.
|
||||
for k in 0..self.l.nrows() {
|
||||
unsafe {
|
||||
// Scatter the k-th column of the original matrix with the values provided.
|
||||
let column_range =
|
||||
*self.original_p.get_unchecked(k)..*self.original_p.get_unchecked(k + 1);
|
||||
|
||||
*self.work_x.vget_unchecked_mut(k) = N::zero();
|
||||
for p in column_range.clone() {
|
||||
let irow = *self.original_i.get_unchecked(p);
|
||||
|
||||
if irow <= k {
|
||||
*self.work_x.vget_unchecked_mut(irow) = *values.get_unchecked(p);
|
||||
}
|
||||
}
|
||||
|
||||
let mut diag = *self.work_x.vget_unchecked(k);
|
||||
*self.work_x.vget_unchecked_mut(k) = N::zero();
|
||||
|
||||
// Triangular solve.
|
||||
for irow in self.u.data.column_row_indices(k) {
|
||||
if irow >= k {
|
||||
continue;
|
||||
}
|
||||
|
||||
let lki = *self.work_x.vget_unchecked(irow)
|
||||
/ *self
|
||||
.l
|
||||
.data
|
||||
.vals
|
||||
.get_unchecked(*self.l.data.p.vget_unchecked(irow));
|
||||
*self.work_x.vget_unchecked_mut(irow) = N::zero();
|
||||
|
||||
for p in
|
||||
*self.l.data.p.vget_unchecked(irow) + 1..*self.work_c.vget_unchecked(irow)
|
||||
{
|
||||
*self
|
||||
.work_x
|
||||
.vget_unchecked_mut(*self.l.data.i.get_unchecked(p)) -=
|
||||
*self.l.data.vals.get_unchecked(p) * lki;
|
||||
}
|
||||
|
||||
diag -= lki * lki;
|
||||
let p = *self.work_c.vget_unchecked(irow);
|
||||
*self.work_c.vget_unchecked_mut(irow) += 1;
|
||||
*self.l.data.i.get_unchecked_mut(p) = k;
|
||||
*self.l.data.vals.get_unchecked_mut(p) = lki;
|
||||
}
|
||||
|
||||
if diag <= N::zero() {
|
||||
self.ok = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Deal with the diagonal element.
|
||||
let p = *self.work_c.vget_unchecked(k);
|
||||
*self.work_c.vget_unchecked_mut(k) += 1;
|
||||
*self.l.data.i.get_unchecked_mut(p) = k;
|
||||
*self.l.data.vals.get_unchecked_mut(p) = diag.sqrt();
|
||||
}
|
||||
}
|
||||
|
||||
self.ok = true;
|
||||
true
|
||||
}
|
||||
|
||||
fn elimination_tree<S: CsStorage<N, D, D>>(m: &CsMatrix<N, D, D, S>) -> Vec<usize> {
|
||||
let nrows = m.nrows();
|
||||
let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
||||
let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
||||
|
||||
for k in 0..nrows {
|
||||
for irow in m.data.column_row_indices(k) {
|
||||
let mut i = irow;
|
||||
|
||||
while i < k {
|
||||
let i_ancestor = ancestor[i];
|
||||
ancestor[i] = k;
|
||||
|
||||
if i_ancestor == usize::max_value() {
|
||||
forest[i] = k;
|
||||
break;
|
||||
}
|
||||
|
||||
i = i_ancestor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
forest
|
||||
}
|
||||
|
||||
fn reach<S: CsStorage<N, D, D>>(
|
||||
m: &CsMatrix<N, D, D, S>,
|
||||
j: usize,
|
||||
max_j: usize,
|
||||
tree: &[usize],
|
||||
marks: &mut Vec<bool>,
|
||||
out: &mut Vec<usize>,
|
||||
)
|
||||
{
|
||||
marks.clear();
|
||||
marks.resize(tree.len(), false);
|
||||
|
||||
// FIXME: avoid all those allocations.
|
||||
let mut tmp = Vec::new();
|
||||
let mut res = Vec::new();
|
||||
|
||||
for irow in m.data.column_row_indices(j) {
|
||||
let mut curr = irow;
|
||||
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
|
||||
marks[curr] = true;
|
||||
tmp.push(curr);
|
||||
curr = tree[curr];
|
||||
}
|
||||
|
||||
tmp.append(&mut res);
|
||||
mem::swap(&mut tmp, &mut res);
|
||||
}
|
||||
|
||||
out.append(&mut res);
|
||||
}
|
||||
|
||||
fn nonzero_pattern<S: CsStorage<N, D, D>>(
|
||||
m: &CsMatrix<N, D, D, S>,
|
||||
) -> (CsMatrix<N, D, D>, CsMatrix<N, D, D>) {
|
||||
let etree = Self::elimination_tree(m);
|
||||
let (nrows, ncols) = m.data.shape();
|
||||
let mut rows = Vec::with_capacity(m.len());
|
||||
let mut cols = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
||||
let mut marks = Vec::new();
|
||||
|
||||
// NOTE: the following will actually compute the non-zero pattern of
|
||||
// the transpose of l.
|
||||
for i in 0..nrows.value() {
|
||||
cols[i] = rows.len();
|
||||
Self::reach(m, i, i, &etree, &mut marks, &mut rows);
|
||||
}
|
||||
|
||||
let mut vals = Vec::with_capacity(rows.len());
|
||||
unsafe {
|
||||
vals.set_len(rows.len());
|
||||
}
|
||||
vals.shrink_to_fit();
|
||||
|
||||
let data = CsVecStorage {
|
||||
shape: (nrows, ncols),
|
||||
p: cols,
|
||||
i: rows,
|
||||
vals,
|
||||
};
|
||||
|
||||
let u = CsMatrix::from_data(data);
|
||||
// XXX: avoid this transpose.
|
||||
let l = u.transpose();
|
||||
|
||||
(l, u)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* NOTE: All the following methods are untested and currently unused.
|
||||
*
|
||||
*
|
||||
fn column_counts<S: CsStorage<N, D, D>>(
|
||||
m: &CsMatrix<N, D, D, S>,
|
||||
tree: &[usize],
|
||||
) -> Vec<usize> {
|
||||
let len = m.data.shape().0.value();
|
||||
let mut counts: Vec<_> = iter::repeat(0).take(len).collect();
|
||||
let mut reach = Vec::new();
|
||||
let mut marks = Vec::new();
|
||||
|
||||
for i in 0..len {
|
||||
Self::reach(m, i, i, tree, &mut marks, &mut reach);
|
||||
|
||||
for j in reach.drain(..) {
|
||||
counts[j] += 1;
|
||||
}
|
||||
}
|
||||
|
||||
counts
|
||||
}
|
||||
|
||||
fn tree_postorder(tree: &[usize]) -> Vec<usize> {
|
||||
// FIXME: avoid all those allocations?
|
||||
let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
let mut other_children: Vec<_> =
|
||||
iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
|
||||
// Build the children list from the parent list.
|
||||
// The set of children of the node `i` is given by the linked list
|
||||
// starting at `first_child[i]`. The nodes of this list are then:
|
||||
// { first_child[i], other_children[first_child[i]], other_children[other_children[first_child[i]], ... }
|
||||
for (i, parent) in tree.iter().enumerate() {
|
||||
if *parent != usize::max_value() {
|
||||
let brother = first_child[*parent];
|
||||
first_child[*parent] = i;
|
||||
other_children[i] = brother;
|
||||
}
|
||||
}
|
||||
|
||||
let mut stack = Vec::with_capacity(tree.len());
|
||||
let mut postorder = Vec::with_capacity(tree.len());
|
||||
|
||||
for (i, node) in tree.iter().enumerate() {
|
||||
if *node == usize::max_value() {
|
||||
Self::dfs(
|
||||
i,
|
||||
&mut first_child,
|
||||
&other_children,
|
||||
&mut stack,
|
||||
&mut postorder,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
postorder
|
||||
}
|
||||
|
||||
fn dfs(
|
||||
i: usize,
|
||||
first_child: &mut [usize],
|
||||
other_children: &[usize],
|
||||
stack: &mut Vec<usize>,
|
||||
result: &mut Vec<usize>,
|
||||
) {
|
||||
stack.clear();
|
||||
stack.push(i);
|
||||
|
||||
while let Some(n) = stack.pop() {
|
||||
let child = first_child[n];
|
||||
|
||||
if child == usize::max_value() {
|
||||
// No children left.
|
||||
result.push(n);
|
||||
} else {
|
||||
stack.push(n);
|
||||
stack.push(child);
|
||||
first_child[n] = other_children[child];
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
114
src/sparse/cs_matrix_conversion.rs
Normal file
114
src/sparse/cs_matrix_conversion.rs
Normal file
@ -0,0 +1,114 @@
|
||||
use alga::general::ClosedAdd;
|
||||
use num::Zero;
|
||||
|
||||
use allocator::Allocator;
|
||||
use sparse::cs_utils;
|
||||
use sparse::{CsMatrix, CsStorage};
|
||||
use storage::Storage;
|
||||
use {DefaultAllocator, Dim, Dynamic, Matrix, MatrixMN, Scalar};
|
||||
|
||||
impl<'a, N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
|
||||
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
|
||||
pub fn from_triplet(
|
||||
nrows: usize,
|
||||
ncols: usize,
|
||||
irows: &[usize],
|
||||
icols: &[usize],
|
||||
vals: &[N],
|
||||
) -> Self
|
||||
{
|
||||
Self::from_triplet_generic(Dynamic::new(nrows), Dynamic::new(ncols), irows, icols, vals)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar + Zero + ClosedAdd, R: Dim, C: Dim> CsMatrix<N, R, C>
|
||||
where DefaultAllocator: Allocator<usize, C> + Allocator<N, R>
|
||||
{
|
||||
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
|
||||
pub fn from_triplet_generic(
|
||||
nrows: R,
|
||||
ncols: C,
|
||||
irows: &[usize],
|
||||
icols: &[usize],
|
||||
vals: &[N],
|
||||
) -> Self
|
||||
{
|
||||
assert!(vals.len() == irows.len());
|
||||
assert!(vals.len() == icols.len());
|
||||
|
||||
let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, vals.len());
|
||||
let mut workspace = res.data.p.clone();
|
||||
|
||||
// Column count.
|
||||
for j in icols.iter().cloned() {
|
||||
workspace[j] += 1;
|
||||
}
|
||||
|
||||
let _ = cs_utils::cumsum(&mut workspace, &mut res.data.p);
|
||||
|
||||
// Fill i and vals.
|
||||
for ((i, j), val) in irows
|
||||
.iter()
|
||||
.cloned()
|
||||
.zip(icols.iter().cloned())
|
||||
.zip(vals.iter().cloned())
|
||||
{
|
||||
let offset = workspace[j];
|
||||
res.data.i[offset] = i;
|
||||
res.data.vals[offset] = val;
|
||||
workspace[j] = offset + 1;
|
||||
}
|
||||
|
||||
// Sort the result.
|
||||
res.sort();
|
||||
res.dedup();
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<CsMatrix<N, R, C, S>> for MatrixMN<N, R, C>
|
||||
where
|
||||
S: CsStorage<N, R, C>,
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
fn from(m: CsMatrix<N, R, C, S>) -> Self {
|
||||
let (nrows, ncols) = m.data.shape();
|
||||
let mut res = MatrixMN::zeros_generic(nrows, ncols);
|
||||
|
||||
for j in 0..ncols.value() {
|
||||
for (i, val) in m.data.column_entries(j) {
|
||||
res[(i, j)] = val;
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<Matrix<N, R, C, S>> for CsMatrix<N, R, C>
|
||||
where
|
||||
S: Storage<N, R, C>,
|
||||
DefaultAllocator: Allocator<N, R, C> + Allocator<usize, C>,
|
||||
{
|
||||
fn from(m: Matrix<N, R, C, S>) -> Self {
|
||||
let (nrows, ncols) = m.data.shape();
|
||||
let len = m.iter().filter(|e| !e.is_zero()).count();
|
||||
let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, len);
|
||||
let mut nz = 0;
|
||||
|
||||
for j in 0..ncols.value() {
|
||||
let column = m.column(j);
|
||||
res.data.p[j] = nz;
|
||||
|
||||
for i in 0..nrows.value() {
|
||||
if !column[i].is_zero() {
|
||||
res.data.i[nz] = i;
|
||||
res.data.vals[nz] = column[i];
|
||||
nz += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
304
src/sparse/cs_matrix_ops.rs
Normal file
304
src/sparse/cs_matrix_ops.rs
Normal file
@ -0,0 +1,304 @@
|
||||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use std::ops::{Add, Mul};
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, ShapeConstraint};
|
||||
use sparse::{CsMatrix, CsStorage, CsStorageMut, CsVector};
|
||||
use storage::StorageMut;
|
||||
use {DefaultAllocator, Dim, Scalar, Vector, VectorN, U1};
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||||
fn scatter<R2: Dim, C2: Dim>(
|
||||
&self,
|
||||
j: usize,
|
||||
beta: N,
|
||||
timestamps: &mut [usize],
|
||||
timestamp: usize,
|
||||
workspace: &mut [N],
|
||||
mut nz: usize,
|
||||
res: &mut CsMatrix<N, R2, C2>,
|
||||
) -> usize
|
||||
where
|
||||
N: ClosedAdd + ClosedMul,
|
||||
DefaultAllocator: Allocator<usize, C2>,
|
||||
{
|
||||
for (i, val) in self.data.column_entries(j) {
|
||||
if timestamps[i] < timestamp {
|
||||
timestamps[i] = timestamp;
|
||||
res.data.i[nz] = i;
|
||||
nz += 1;
|
||||
workspace[i] = val * beta;
|
||||
} else {
|
||||
workspace[i] += val * beta;
|
||||
}
|
||||
}
|
||||
|
||||
nz
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
impl<N: Scalar, R, S> CsVector<N, R, S> {
|
||||
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
|
||||
// First, compute the number of non-zero entries.
|
||||
let mut nnzero = 0;
|
||||
|
||||
// Allocate a size large enough.
|
||||
self.data.set_column_len(0, nnzero);
|
||||
|
||||
// Fill with the axpy.
|
||||
let mut i = self.len();
|
||||
let mut j = x.len();
|
||||
let mut k = nnzero - 1;
|
||||
let mut rid1 = self.data.row_index(0, i - 1);
|
||||
let mut rid2 = x.data.row_index(0, j - 1);
|
||||
|
||||
while k > 0 {
|
||||
if rid1 == rid2 {
|
||||
self.data.set_row_index(0, k, rid1);
|
||||
self[k] = alpha * x[j] + beta * self[k];
|
||||
i -= 1;
|
||||
j -= 1;
|
||||
} else if rid1 < rid2 {
|
||||
self.data.set_row_index(0, k, rid1);
|
||||
self[k] = beta * self[i];
|
||||
i -= 1;
|
||||
} else {
|
||||
self.data.set_row_index(0, k, rid2);
|
||||
self[k] = alpha * x[j];
|
||||
j -= 1;
|
||||
}
|
||||
|
||||
k -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
impl<N: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
|
||||
/// Perform a sparse axpy operation: `self = alpha * x + beta * self` operation.
|
||||
pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N)
|
||||
where
|
||||
S2: CsStorage<N, D2>,
|
||||
ShapeConstraint: DimEq<D, D2>,
|
||||
{
|
||||
if beta.is_zero() {
|
||||
for i in 0..x.len() {
|
||||
unsafe {
|
||||
let k = x.data.row_index_unchecked(i);
|
||||
let y = self.vget_unchecked_mut(k);
|
||||
*y = alpha * *x.data.get_value_unchecked(i);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Needed to be sure even components not present on `x` are multiplied.
|
||||
*self *= beta;
|
||||
|
||||
for i in 0..x.len() {
|
||||
unsafe {
|
||||
let k = x.data.row_index_unchecked(i);
|
||||
let y = self.vget_unchecked_mut(k);
|
||||
*y += alpha * *x.data.get_value_unchecked(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
pub fn gemv_sparse<R2: Dim, C2: Dim, S2>(&mut self, alpha: N, a: &CsMatrix<N, R2, C2, S2>, x: &DVector<N>, beta: N)
|
||||
where
|
||||
S2: CsStorage<N, R2, C2> {
|
||||
let col2 = a.column(0);
|
||||
let val = unsafe { *x.vget_unchecked(0) };
|
||||
self.axpy_sparse(alpha * val, &col2, beta);
|
||||
|
||||
for j in 1..ncols2 {
|
||||
let col2 = a.column(j);
|
||||
let val = unsafe { *x.vget_unchecked(j) };
|
||||
|
||||
self.axpy_sparse(alpha * val, &col2, N::one());
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<N, R2, C2, S2>>
|
||||
for &'a CsMatrix<N, R1, C1, S1>
|
||||
where
|
||||
N: Scalar + ClosedAdd + ClosedMul + Zero,
|
||||
R1: Dim,
|
||||
C1: Dim,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S1: CsStorage<N, R1, C1>,
|
||||
S2: CsStorage<N, R2, C2>,
|
||||
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
|
||||
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
||||
{
|
||||
type Output = CsMatrix<N, R1, C2>;
|
||||
|
||||
fn mul(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
|
||||
let (nrows1, ncols1) = self.data.shape();
|
||||
let (nrows2, ncols2) = rhs.data.shape();
|
||||
assert_eq!(
|
||||
ncols1.value(),
|
||||
nrows2.value(),
|
||||
"Mismatched dimensions for matrix multiplication."
|
||||
);
|
||||
|
||||
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||||
let mut workspace = VectorN::<N, R1>::zeros_generic(nrows1, U1);
|
||||
let mut nz = 0;
|
||||
|
||||
for j in 0..ncols2.value() {
|
||||
res.data.p[j] = nz;
|
||||
let new_size_bound = nz + nrows1.value();
|
||||
res.data.i.resize(new_size_bound, 0);
|
||||
res.data.vals.resize(new_size_bound, N::zero());
|
||||
|
||||
for (i, beta) in rhs.data.column_entries(j) {
|
||||
for (k, val) in self.data.column_entries(i) {
|
||||
workspace[k] += val * beta;
|
||||
}
|
||||
}
|
||||
|
||||
for (i, val) in workspace.as_mut_slice().iter_mut().enumerate() {
|
||||
if !val.is_zero() {
|
||||
res.data.i[nz] = i;
|
||||
res.data.vals[nz] = *val;
|
||||
*val = N::zero();
|
||||
nz += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: the following has a lower complexity, but is slower in many cases, likely because
|
||||
// of branching inside of the inner loop.
|
||||
//
|
||||
// let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||||
// let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
||||
// let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
||||
// let mut nz = 0;
|
||||
//
|
||||
// for j in 0..ncols2.value() {
|
||||
// res.data.p[j] = nz;
|
||||
// let new_size_bound = nz + nrows1.value();
|
||||
// res.data.i.resize(new_size_bound, 0);
|
||||
// res.data.vals.resize(new_size_bound, N::zero());
|
||||
//
|
||||
// for (i, val) in rhs.data.column_entries(j) {
|
||||
// nz = self.scatter(
|
||||
// i,
|
||||
// val,
|
||||
// timestamps.as_mut_slice(),
|
||||
// j + 1,
|
||||
// workspace.as_mut_slice(),
|
||||
// nz,
|
||||
// &mut res,
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// // Keep the output sorted.
|
||||
// let range = res.data.p[j]..nz;
|
||||
// res.data.i[range.clone()].sort();
|
||||
//
|
||||
// for p in range {
|
||||
// res.data.vals[p] = workspace[res.data.i[p]]
|
||||
// }
|
||||
// }
|
||||
|
||||
res.data.i.truncate(nz);
|
||||
res.data.i.shrink_to_fit();
|
||||
res.data.vals.truncate(nz);
|
||||
res.data.vals.shrink_to_fit();
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<N, R2, C2, S2>>
|
||||
for &'a CsMatrix<N, R1, C1, S1>
|
||||
where
|
||||
N: Scalar + ClosedAdd + ClosedMul + One,
|
||||
R1: Dim,
|
||||
C1: Dim,
|
||||
R2: Dim,
|
||||
C2: Dim,
|
||||
S1: CsStorage<N, R1, C1>,
|
||||
S2: CsStorage<N, R2, C2>,
|
||||
ShapeConstraint: DimEq<R1, R2> + DimEq<C1, C2>,
|
||||
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
||||
{
|
||||
type Output = CsMatrix<N, R1, C2>;
|
||||
|
||||
fn add(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
|
||||
let (nrows1, ncols1) = self.data.shape();
|
||||
let (nrows2, ncols2) = rhs.data.shape();
|
||||
assert_eq!(
|
||||
(nrows1.value(), ncols1.value()),
|
||||
(nrows2.value(), ncols2.value()),
|
||||
"Mismatched dimensions for matrix sum."
|
||||
);
|
||||
|
||||
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||||
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
||||
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
||||
let mut nz = 0;
|
||||
|
||||
for j in 0..ncols2.value() {
|
||||
res.data.p[j] = nz;
|
||||
|
||||
nz = self.scatter(
|
||||
j,
|
||||
N::one(),
|
||||
timestamps.as_mut_slice(),
|
||||
j + 1,
|
||||
workspace.as_mut_slice(),
|
||||
nz,
|
||||
&mut res,
|
||||
);
|
||||
|
||||
nz = rhs.scatter(
|
||||
j,
|
||||
N::one(),
|
||||
timestamps.as_mut_slice(),
|
||||
j + 1,
|
||||
workspace.as_mut_slice(),
|
||||
nz,
|
||||
&mut res,
|
||||
);
|
||||
|
||||
// Keep the output sorted.
|
||||
let range = res.data.p[j]..nz;
|
||||
res.data.i[range.clone()].sort();
|
||||
|
||||
for p in range {
|
||||
res.data.vals[p] = workspace[res.data.i[p]]
|
||||
}
|
||||
}
|
||||
|
||||
res.data.i.truncate(nz);
|
||||
res.data.i.shrink_to_fit();
|
||||
res.data.vals.truncate(nz);
|
||||
res.data.vals.shrink_to_fit();
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b, N, R, C, S> Mul<N> for CsMatrix<N, R, C, S>
|
||||
where
|
||||
N: Scalar + ClosedAdd + ClosedMul + Zero,
|
||||
R: Dim,
|
||||
C: Dim,
|
||||
S: CsStorageMut<N, R, C>,
|
||||
{
|
||||
type Output = Self;
|
||||
|
||||
fn mul(mut self, rhs: N) -> Self {
|
||||
for e in self.values_mut() {
|
||||
*e *= rhs
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
283
src/sparse/cs_matrix_solve.rs
Normal file
283
src/sparse/cs_matrix_solve.rs
Normal file
@ -0,0 +1,283 @@
|
||||
use allocator::Allocator;
|
||||
use constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||
use storage::{Storage, StorageMut};
|
||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, VectorN, U1};
|
||||
|
||||
impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
||||
/// Solve a lower-triangular system with a dense right-hand-side.
|
||||
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||
{
|
||||
let mut b = b.clone_owned();
|
||||
if self.solve_lower_triangular_mut(&mut b) {
|
||||
Some(b)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Solve a lower-triangular system with `self` transposed and a dense right-hand-side.
|
||||
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> Option<MatrixMN<N, R2, C2>>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||
{
|
||||
let mut b = b.clone_owned();
|
||||
if self.tr_solve_lower_triangular_mut(&mut b) {
|
||||
Some(b)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Solve in-place a lower-triangular system with a dense right-hand-side.
|
||||
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) -> bool
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
||||
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
||||
|
||||
for j2 in 0..b.ncols() {
|
||||
let mut b = b.column_mut(j2);
|
||||
|
||||
for j in 0..ncols.value() {
|
||||
let mut column = self.data.column_entries(j);
|
||||
let mut diag_found = false;
|
||||
|
||||
while let Some((i, val)) = column.next() {
|
||||
if i == j {
|
||||
if val.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
b[j] /= val;
|
||||
diag_found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if !diag_found {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (i, val) in column {
|
||||
b[i] -= b[j] * val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
/// Solve a lower-triangular system with `self` transposed and a dense right-hand-side.
|
||||
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) -> bool
|
||||
where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||
{
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
||||
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
||||
|
||||
for j2 in 0..b.ncols() {
|
||||
let mut b = b.column_mut(j2);
|
||||
|
||||
for j in (0..ncols.value()).rev() {
|
||||
let mut column = self.data.column_entries(j);
|
||||
let mut diag = None;
|
||||
|
||||
while let Some((i, val)) = column.next() {
|
||||
if i == j {
|
||||
if val.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
diag = Some(val);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(diag) = diag {
|
||||
for (i, val) in column {
|
||||
b[j] -= val * b[i];
|
||||
}
|
||||
|
||||
b[j] /= diag;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
/// Solve a lower-triangular system with a sparse right-hand-side.
|
||||
pub fn solve_lower_triangular_cs<D2: Dim, S2>(
|
||||
&self,
|
||||
b: &CsVector<N, D2, S2>,
|
||||
) -> Option<CsVector<N, D2>>
|
||||
where
|
||||
S2: CsStorage<N, D2>,
|
||||
DefaultAllocator: Allocator<bool, D> + Allocator<N, D2> + Allocator<usize, D2>,
|
||||
ShapeConstraint: SameNumberOfRows<D, D2>,
|
||||
{
|
||||
let mut reach = Vec::new();
|
||||
// We don't compute a postordered reach here because it will be sorted after anyway.
|
||||
self.lower_triangular_reach(b, &mut reach);
|
||||
// We sort the reach so the result matrix has sorted indices.
|
||||
reach.sort();
|
||||
let mut workspace = unsafe { VectorN::new_uninitialized_generic(b.data.shape().0, U1) };
|
||||
|
||||
for i in reach.iter().cloned() {
|
||||
workspace[i] = N::zero();
|
||||
}
|
||||
|
||||
for (i, val) in b.data.column_entries(0) {
|
||||
workspace[i] = val;
|
||||
}
|
||||
|
||||
for j in reach.iter().cloned() {
|
||||
let mut column = self.data.column_entries(j);
|
||||
let mut diag_found = false;
|
||||
|
||||
while let Some((i, val)) = column.next() {
|
||||
if i == j {
|
||||
if val.is_zero() {
|
||||
break;
|
||||
}
|
||||
|
||||
workspace[j] /= val;
|
||||
diag_found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if !diag_found {
|
||||
return None;
|
||||
}
|
||||
|
||||
for (i, val) in column {
|
||||
workspace[i] -= workspace[j] * val;
|
||||
}
|
||||
}
|
||||
|
||||
// Copy the result into a sparse vector.
|
||||
let mut result = CsVector::new_uninitialized_generic(b.data.shape().0, U1, reach.len());
|
||||
|
||||
for (i, val) in reach.iter().zip(result.data.vals.iter_mut()) {
|
||||
*val = workspace[*i];
|
||||
}
|
||||
|
||||
result.data.i = reach;
|
||||
Some(result)
|
||||
}
|
||||
|
||||
/*
|
||||
// Computes the reachable, post-ordered, nodes from `b`.
|
||||
fn lower_triangular_reach_postordered<D2: Dim, S2>(
|
||||
&self,
|
||||
b: &CsVector<N, D2, S2>,
|
||||
xi: &mut Vec<usize>,
|
||||
) where
|
||||
S2: CsStorage<N, D2>,
|
||||
DefaultAllocator: Allocator<bool, D>,
|
||||
{
|
||||
let mut visited = VectorN::repeat_generic(self.data.shape().1, U1, false);
|
||||
let mut stack = Vec::new();
|
||||
|
||||
for i in b.data.column_range(0) {
|
||||
let row_index = b.data.row_index(i);
|
||||
|
||||
if !visited[row_index] {
|
||||
let rng = self.data.column_range(row_index);
|
||||
stack.push((row_index, rng));
|
||||
self.lower_triangular_dfs(visited.as_mut_slice(), &mut stack, xi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn lower_triangular_dfs(
|
||||
&self,
|
||||
visited: &mut [bool],
|
||||
stack: &mut Vec<(usize, Range<usize>)>,
|
||||
xi: &mut Vec<usize>,
|
||||
)
|
||||
{
|
||||
'recursion: while let Some((j, rng)) = stack.pop() {
|
||||
visited[j] = true;
|
||||
|
||||
for i in rng.clone() {
|
||||
let row_id = self.data.row_index(i);
|
||||
if row_id > j && !visited[row_id] {
|
||||
stack.push((j, (i + 1)..rng.end));
|
||||
stack.push((row_id, self.data.column_range(row_id)));
|
||||
continue 'recursion;
|
||||
}
|
||||
}
|
||||
|
||||
xi.push(j)
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// Computes the nodes reachable from `b` in an arbitrary order.
|
||||
fn lower_triangular_reach<D2: Dim, S2>(&self, b: &CsVector<N, D2, S2>, xi: &mut Vec<usize>)
|
||||
where
|
||||
S2: CsStorage<N, D2>,
|
||||
DefaultAllocator: Allocator<bool, D>,
|
||||
{
|
||||
let mut visited = VectorN::repeat_generic(self.data.shape().1, U1, false);
|
||||
let mut stack = Vec::new();
|
||||
|
||||
for irow in b.data.column_row_indices(0) {
|
||||
self.lower_triangular_bfs(irow, visited.as_mut_slice(), &mut stack, xi);
|
||||
}
|
||||
}
|
||||
|
||||
fn lower_triangular_bfs(
|
||||
&self,
|
||||
start: usize,
|
||||
visited: &mut [bool],
|
||||
stack: &mut Vec<usize>,
|
||||
xi: &mut Vec<usize>,
|
||||
)
|
||||
{
|
||||
if !visited[start] {
|
||||
stack.clear();
|
||||
stack.push(start);
|
||||
xi.push(start);
|
||||
visited[start] = true;
|
||||
|
||||
while let Some(j) = stack.pop() {
|
||||
for irow in self.data.column_row_indices(j) {
|
||||
if irow > j && !visited[irow] {
|
||||
stack.push(irow);
|
||||
xi.push(irow);
|
||||
visited[irow] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
16
src/sparse/cs_utils.rs
Normal file
16
src/sparse/cs_utils.rs
Normal file
@ -0,0 +1,16 @@
|
||||
use allocator::Allocator;
|
||||
use {DefaultAllocator, Dim, VectorN};
|
||||
|
||||
pub fn cumsum<D: Dim>(a: &mut VectorN<usize, D>, b: &mut VectorN<usize, D>) -> usize
|
||||
where DefaultAllocator: Allocator<usize, D> {
|
||||
assert!(a.len() == b.len());
|
||||
let mut sum = 0;
|
||||
|
||||
for i in 0..a.len() {
|
||||
b[i] = sum;
|
||||
sum += a[i];
|
||||
a[i] = b[i];
|
||||
}
|
||||
|
||||
sum
|
||||
}
|
13
src/sparse/mod.rs
Normal file
13
src/sparse/mod.rs
Normal file
@ -0,0 +1,13 @@
|
||||
//! Sparse matrices.
|
||||
|
||||
pub use self::cs_matrix::{
|
||||
CsMatrix, CsStorage, CsStorageIter, CsStorageIterMut, CsStorageMut, CsVecStorage, CsVector,
|
||||
};
|
||||
pub use self::cs_matrix_cholesky::CsCholesky;
|
||||
|
||||
mod cs_matrix;
|
||||
mod cs_matrix_cholesky;
|
||||
mod cs_matrix_conversion;
|
||||
mod cs_matrix_ops;
|
||||
mod cs_matrix_solve;
|
||||
pub(crate) mod cs_utils;
|
@ -25,27 +25,35 @@ quickcheck!(
|
||||
let viewmatrix = Isometry3::look_at_rh(&eye, &target, &up);
|
||||
|
||||
let origin = Point3::origin();
|
||||
relative_eq!(viewmatrix * eye, origin, epsilon = 1.0e-7) &&
|
||||
relative_eq!((viewmatrix * (target - eye)).normalize(), -Vector3::z(), epsilon = 1.0e-7)
|
||||
relative_eq!(viewmatrix * eye, origin, epsilon = 1.0e-7)
|
||||
&& relative_eq!(
|
||||
(viewmatrix * (target - eye)).normalize(),
|
||||
-Vector3::z(),
|
||||
epsilon = 1.0e-7
|
||||
)
|
||||
}
|
||||
|
||||
fn observer_frame_3(eye: Point3<f64>, target: Point3<f64>, up: Vector3<f64>) -> bool {
|
||||
let observer = Isometry3::face_towards(&eye, &target, &up);
|
||||
|
||||
let origin = Point3::origin();
|
||||
relative_eq!(observer * origin, eye, epsilon = 1.0e-7) &&
|
||||
relative_eq!(observer * Vector3::z(), (target - eye).normalize(), epsilon = 1.0e-7)
|
||||
relative_eq!(observer * origin, eye, epsilon = 1.0e-7)
|
||||
&& relative_eq!(
|
||||
observer * Vector3::z(),
|
||||
(target - eye).normalize(),
|
||||
epsilon = 1.0e-7
|
||||
)
|
||||
}
|
||||
|
||||
fn inverse_is_identity(i: Isometry3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool {
|
||||
let ii = i.inverse();
|
||||
|
||||
relative_eq!(i * ii, Isometry3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(ii * i, Isometry3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) &&
|
||||
relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) &&
|
||||
relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) &&
|
||||
relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
|
||||
relative_eq!(i * ii, Isometry3::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(ii * i, Isometry3::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!((i * ii) * p, p, epsilon = 1.0e-7)
|
||||
&& relative_eq!((ii * i) * p, p, epsilon = 1.0e-7)
|
||||
&& relative_eq!((i * ii) * v, v, epsilon = 1.0e-7)
|
||||
&& relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn inverse_is_parts_inversion(t: Translation3<f64>, r: UnitQuaternion<f64>) -> bool {
|
||||
@ -54,14 +62,29 @@ quickcheck!(
|
||||
}
|
||||
|
||||
fn multiply_equals_alga_transform(i: Isometry3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
||||
i * v == i.transform_vector(&v) &&
|
||||
i * p == i.transform_point(&p) &&
|
||||
relative_eq!(i.inverse() * v, i.inverse_transform_vector(&v), epsilon = 1.0e-7) &&
|
||||
relative_eq!(i.inverse() * p, i.inverse_transform_point(&p), epsilon = 1.0e-7)
|
||||
i * v == i.transform_vector(&v)
|
||||
&& i * p == i.transform_point(&p)
|
||||
&& relative_eq!(
|
||||
i.inverse() * v,
|
||||
i.inverse_transform_vector(&v),
|
||||
epsilon = 1.0e-7
|
||||
)
|
||||
&& relative_eq!(
|
||||
i.inverse() * p,
|
||||
i.inverse_transform_point(&p),
|
||||
epsilon = 1.0e-7
|
||||
)
|
||||
}
|
||||
|
||||
fn composition2(i: Isometry2<f64>, uc: UnitComplex<f64>, r: Rotation2<f64>,
|
||||
t: Translation2<f64>, v: Vector2<f64>, p: Point2<f64>) -> bool {
|
||||
fn composition2(
|
||||
i: Isometry2<f64>,
|
||||
uc: UnitComplex<f64>,
|
||||
r: Rotation2<f64>,
|
||||
t: Translation2<f64>,
|
||||
v: Vector2<f64>,
|
||||
p: Point2<f64>,
|
||||
) -> bool
|
||||
{
|
||||
// (rotation × translation) * point = rotation × (translation * point)
|
||||
relative_eq!((uc * t) * v, uc * v, epsilon = 1.0e-7) &&
|
||||
relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) &&
|
||||
@ -91,8 +114,15 @@ quickcheck!(
|
||||
relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn composition3(i: Isometry3<f64>, uq: UnitQuaternion<f64>, r: Rotation3<f64>,
|
||||
t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
||||
fn composition3(
|
||||
i: Isometry3<f64>,
|
||||
uq: UnitQuaternion<f64>,
|
||||
r: Rotation3<f64>,
|
||||
t: Translation3<f64>,
|
||||
v: Vector3<f64>,
|
||||
p: Point3<f64>,
|
||||
) -> bool
|
||||
{
|
||||
// (rotation × translation) * point = rotation × (translation * point)
|
||||
relative_eq!((uq * t) * v, uq * v, epsilon = 1.0e-7) &&
|
||||
relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) &&
|
||||
@ -122,11 +152,18 @@ quickcheck!(
|
||||
relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn all_op_exist(i: Isometry3<f64>, uq: UnitQuaternion<f64>, t: Translation3<f64>,
|
||||
v: Vector3<f64>, p: Point3<f64>, r: Rotation3<f64>) -> bool {
|
||||
let iMi = i * i;
|
||||
fn all_op_exist(
|
||||
i: Isometry3<f64>,
|
||||
uq: UnitQuaternion<f64>,
|
||||
t: Translation3<f64>,
|
||||
v: Vector3<f64>,
|
||||
p: Point3<f64>,
|
||||
r: Rotation3<f64>,
|
||||
) -> bool
|
||||
{
|
||||
let iMi = i * i;
|
||||
let iMuq = i * uq;
|
||||
let iDi = i / i;
|
||||
let iDi = i / i;
|
||||
let iDuq = i / uq;
|
||||
|
||||
let iMp = i * p;
|
||||
@ -135,13 +172,13 @@ quickcheck!(
|
||||
let iMt = i * t;
|
||||
let tMi = t * i;
|
||||
|
||||
let tMr = t * r;
|
||||
let tMr = t * r;
|
||||
let tMuq = t * uq;
|
||||
|
||||
let uqMi = uq * i;
|
||||
let uqDi = uq / i;
|
||||
|
||||
let rMt = r * t;
|
||||
let rMt = r * t;
|
||||
let uqMt = uq * t;
|
||||
|
||||
let mut iMt1 = i;
|
||||
@ -174,75 +211,57 @@ quickcheck!(
|
||||
iDuq1 /= uq;
|
||||
iDuq2 /= &uq;
|
||||
|
||||
iMt == iMt1 &&
|
||||
iMt == iMt2 &&
|
||||
|
||||
iMi == iMi1 &&
|
||||
iMi == iMi2 &&
|
||||
|
||||
iMuq == iMuq1 &&
|
||||
iMuq == iMuq2 &&
|
||||
|
||||
iDi == iDi1 &&
|
||||
iDi == iDi2 &&
|
||||
|
||||
iDuq == iDuq1 &&
|
||||
iDuq == iDuq2 &&
|
||||
|
||||
iMi == &i * &i &&
|
||||
iMi == i * &i &&
|
||||
iMi == &i * i &&
|
||||
|
||||
iMuq == &i * &uq &&
|
||||
iMuq == i * &uq &&
|
||||
iMuq == &i * uq &&
|
||||
|
||||
iDi == &i / &i &&
|
||||
iDi == i / &i &&
|
||||
iDi == &i / i &&
|
||||
|
||||
iDuq == &i / &uq &&
|
||||
iDuq == i / &uq &&
|
||||
iDuq == &i / uq &&
|
||||
|
||||
iMp == &i * &p &&
|
||||
iMp == i * &p &&
|
||||
iMp == &i * p &&
|
||||
|
||||
iMv == &i * &v &&
|
||||
iMv == i * &v &&
|
||||
iMv == &i * v &&
|
||||
|
||||
iMt == &i * &t &&
|
||||
iMt == i * &t &&
|
||||
iMt == &i * t &&
|
||||
|
||||
tMi == &t * &i &&
|
||||
tMi == t * &i &&
|
||||
tMi == &t * i &&
|
||||
|
||||
tMr == &t * &r &&
|
||||
tMr == t * &r &&
|
||||
tMr == &t * r &&
|
||||
|
||||
tMuq == &t * &uq &&
|
||||
tMuq == t * &uq &&
|
||||
tMuq == &t * uq &&
|
||||
|
||||
uqMi == &uq * &i &&
|
||||
uqMi == uq * &i &&
|
||||
uqMi == &uq * i &&
|
||||
|
||||
uqDi == &uq / &i &&
|
||||
uqDi == uq / &i &&
|
||||
uqDi == &uq / i &&
|
||||
|
||||
rMt == &r * &t &&
|
||||
rMt == r * &t &&
|
||||
rMt == &r * t &&
|
||||
|
||||
uqMt == &uq * &t &&
|
||||
uqMt == uq * &t &&
|
||||
uqMt == &uq * t
|
||||
iMt == iMt1
|
||||
&& iMt == iMt2
|
||||
&& iMi == iMi1
|
||||
&& iMi == iMi2
|
||||
&& iMuq == iMuq1
|
||||
&& iMuq == iMuq2
|
||||
&& iDi == iDi1
|
||||
&& iDi == iDi2
|
||||
&& iDuq == iDuq1
|
||||
&& iDuq == iDuq2
|
||||
&& iMi == &i * &i
|
||||
&& iMi == i * &i
|
||||
&& iMi == &i * i
|
||||
&& iMuq == &i * &uq
|
||||
&& iMuq == i * &uq
|
||||
&& iMuq == &i * uq
|
||||
&& iDi == &i / &i
|
||||
&& iDi == i / &i
|
||||
&& iDi == &i / i
|
||||
&& iDuq == &i / &uq
|
||||
&& iDuq == i / &uq
|
||||
&& iDuq == &i / uq
|
||||
&& iMp == &i * &p
|
||||
&& iMp == i * &p
|
||||
&& iMp == &i * p
|
||||
&& iMv == &i * &v
|
||||
&& iMv == i * &v
|
||||
&& iMv == &i * v
|
||||
&& iMt == &i * &t
|
||||
&& iMt == i * &t
|
||||
&& iMt == &i * t
|
||||
&& tMi == &t * &i
|
||||
&& tMi == t * &i
|
||||
&& tMi == &t * i
|
||||
&& tMr == &t * &r
|
||||
&& tMr == t * &r
|
||||
&& tMr == &t * r
|
||||
&& tMuq == &t * &uq
|
||||
&& tMuq == t * &uq
|
||||
&& tMuq == &t * uq
|
||||
&& uqMi == &uq * &i
|
||||
&& uqMi == uq * &i
|
||||
&& uqMi == &uq * i
|
||||
&& uqDi == &uq / &i
|
||||
&& uqDi == uq / &i
|
||||
&& uqDi == &uq / i
|
||||
&& rMt == &r * &t
|
||||
&& rMt == r * &t
|
||||
&& rMt == &r * t
|
||||
&& uqMt == &uq * &t
|
||||
&& uqMt == uq * &t
|
||||
&& uqMt == &uq * t
|
||||
}
|
||||
);
|
||||
|
@ -8,33 +8,57 @@ quickcheck!(
|
||||
fn inverse_is_identity(i: Similarity3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool {
|
||||
let ii = i.inverse();
|
||||
|
||||
relative_eq!(i * ii, Similarity3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(ii * i, Similarity3::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) &&
|
||||
relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) &&
|
||||
relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) &&
|
||||
relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
|
||||
relative_eq!(i * ii, Similarity3::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(ii * i, Similarity3::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!((i * ii) * p, p, epsilon = 1.0e-7)
|
||||
&& relative_eq!((ii * i) * p, p, epsilon = 1.0e-7)
|
||||
&& relative_eq!((i * ii) * v, v, epsilon = 1.0e-7)
|
||||
&& relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn inverse_is_parts_inversion(t: Translation3<f64>, r: UnitQuaternion<f64>, scaling: f64) -> bool {
|
||||
fn inverse_is_parts_inversion(
|
||||
t: Translation3<f64>,
|
||||
r: UnitQuaternion<f64>,
|
||||
scaling: f64,
|
||||
) -> bool
|
||||
{
|
||||
if relative_eq!(scaling, 0.0) {
|
||||
true
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
let s = Similarity3::from_isometry(t * r, scaling);
|
||||
s.inverse() == Similarity3::from_scaling(1.0 / scaling) * r.inverse() * t.inverse()
|
||||
}
|
||||
}
|
||||
|
||||
fn multiply_equals_alga_transform(s: Similarity3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
||||
s * v == s.transform_vector(&v) &&
|
||||
s * p == s.transform_point(&p) &&
|
||||
relative_eq!(s.inverse() * v, s.inverse_transform_vector(&v), epsilon = 1.0e-7) &&
|
||||
relative_eq!(s.inverse() * p, s.inverse_transform_point(&p), epsilon = 1.0e-7)
|
||||
fn multiply_equals_alga_transform(
|
||||
s: Similarity3<f64>,
|
||||
v: Vector3<f64>,
|
||||
p: Point3<f64>,
|
||||
) -> bool
|
||||
{
|
||||
s * v == s.transform_vector(&v)
|
||||
&& s * p == s.transform_point(&p)
|
||||
&& relative_eq!(
|
||||
s.inverse() * v,
|
||||
s.inverse_transform_vector(&v),
|
||||
epsilon = 1.0e-7
|
||||
)
|
||||
&& relative_eq!(
|
||||
s.inverse() * p,
|
||||
s.inverse_transform_point(&p),
|
||||
epsilon = 1.0e-7
|
||||
)
|
||||
}
|
||||
|
||||
fn composition(i: Isometry3<f64>, uq: UnitQuaternion<f64>,
|
||||
t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>, scaling: f64) -> bool {
|
||||
fn composition(
|
||||
i: Isometry3<f64>,
|
||||
uq: UnitQuaternion<f64>,
|
||||
t: Translation3<f64>,
|
||||
v: Vector3<f64>,
|
||||
p: Point3<f64>,
|
||||
scaling: f64,
|
||||
) -> bool
|
||||
{
|
||||
if relative_eq!(scaling, 0.0) {
|
||||
return true;
|
||||
}
|
||||
@ -122,11 +146,18 @@ quickcheck!(
|
||||
relative_eq!((s * i * t) * p, scaling * (i * (t * p)), epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn all_op_exist(s: Similarity3<f64>, i: Isometry3<f64>, uq: UnitQuaternion<f64>,
|
||||
t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
||||
let sMs = s * s;
|
||||
fn all_op_exist(
|
||||
s: Similarity3<f64>,
|
||||
i: Isometry3<f64>,
|
||||
uq: UnitQuaternion<f64>,
|
||||
t: Translation3<f64>,
|
||||
v: Vector3<f64>,
|
||||
p: Point3<f64>,
|
||||
) -> bool
|
||||
{
|
||||
let sMs = s * s;
|
||||
let sMuq = s * uq;
|
||||
let sDs = s / s;
|
||||
let sDs = s / s;
|
||||
let sDuq = s / uq;
|
||||
|
||||
let sMp = s * p;
|
||||
@ -186,81 +217,61 @@ quickcheck!(
|
||||
sDi1 /= i;
|
||||
sDi2 /= &i;
|
||||
|
||||
sMt == sMt1 &&
|
||||
sMt == sMt2 &&
|
||||
|
||||
sMs == sMs1 &&
|
||||
sMs == sMs2 &&
|
||||
|
||||
sMuq == sMuq1 &&
|
||||
sMuq == sMuq2 &&
|
||||
|
||||
sMi == sMi1 &&
|
||||
sMi == sMi2 &&
|
||||
|
||||
sDs == sDs1 &&
|
||||
sDs == sDs2 &&
|
||||
|
||||
sDuq == sDuq1 &&
|
||||
sDuq == sDuq2 &&
|
||||
|
||||
sDi == sDi1 &&
|
||||
sDi == sDi2 &&
|
||||
|
||||
sMs == &s * &s &&
|
||||
sMs == s * &s &&
|
||||
sMs == &s * s &&
|
||||
|
||||
sMuq == &s * &uq &&
|
||||
sMuq == s * &uq &&
|
||||
sMuq == &s * uq &&
|
||||
|
||||
sDs == &s / &s &&
|
||||
sDs == s / &s &&
|
||||
sDs == &s / s &&
|
||||
|
||||
sDuq == &s / &uq &&
|
||||
sDuq == s / &uq &&
|
||||
sDuq == &s / uq &&
|
||||
|
||||
sMp == &s * &p &&
|
||||
sMp == s * &p &&
|
||||
sMp == &s * p &&
|
||||
|
||||
sMv == &s * &v &&
|
||||
sMv == s * &v &&
|
||||
sMv == &s * v &&
|
||||
|
||||
sMt == &s * &t &&
|
||||
sMt == s * &t &&
|
||||
sMt == &s * t &&
|
||||
|
||||
tMs == &t * &s &&
|
||||
tMs == t * &s &&
|
||||
tMs == &t * s &&
|
||||
|
||||
uqMs == &uq * &s &&
|
||||
uqMs == uq * &s &&
|
||||
uqMs == &uq * s &&
|
||||
|
||||
uqDs == &uq / &s &&
|
||||
uqDs == uq / &s &&
|
||||
uqDs == &uq / s &&
|
||||
|
||||
sMi == &s * &i &&
|
||||
sMi == s * &i &&
|
||||
sMi == &s * i &&
|
||||
|
||||
sDi == &s / &i &&
|
||||
sDi == s / &i &&
|
||||
sDi == &s / i &&
|
||||
|
||||
iMs == &i * &s &&
|
||||
iMs == i * &s &&
|
||||
iMs == &i * s &&
|
||||
|
||||
iDs == &i / &s &&
|
||||
iDs == i / &s &&
|
||||
iDs == &i / s
|
||||
sMt == sMt1
|
||||
&& sMt == sMt2
|
||||
&& sMs == sMs1
|
||||
&& sMs == sMs2
|
||||
&& sMuq == sMuq1
|
||||
&& sMuq == sMuq2
|
||||
&& sMi == sMi1
|
||||
&& sMi == sMi2
|
||||
&& sDs == sDs1
|
||||
&& sDs == sDs2
|
||||
&& sDuq == sDuq1
|
||||
&& sDuq == sDuq2
|
||||
&& sDi == sDi1
|
||||
&& sDi == sDi2
|
||||
&& sMs == &s * &s
|
||||
&& sMs == s * &s
|
||||
&& sMs == &s * s
|
||||
&& sMuq == &s * &uq
|
||||
&& sMuq == s * &uq
|
||||
&& sMuq == &s * uq
|
||||
&& sDs == &s / &s
|
||||
&& sDs == s / &s
|
||||
&& sDs == &s / s
|
||||
&& sDuq == &s / &uq
|
||||
&& sDuq == s / &uq
|
||||
&& sDuq == &s / uq
|
||||
&& sMp == &s * &p
|
||||
&& sMp == s * &p
|
||||
&& sMp == &s * p
|
||||
&& sMv == &s * &v
|
||||
&& sMv == s * &v
|
||||
&& sMv == &s * v
|
||||
&& sMt == &s * &t
|
||||
&& sMt == s * &t
|
||||
&& sMt == &s * t
|
||||
&& tMs == &t * &s
|
||||
&& tMs == t * &s
|
||||
&& tMs == &t * s
|
||||
&& uqMs == &uq * &s
|
||||
&& uqMs == uq * &s
|
||||
&& uqMs == &uq * s
|
||||
&& uqDs == &uq / &s
|
||||
&& uqDs == uq / &s
|
||||
&& uqDs == &uq / s
|
||||
&& sMi == &s * &i
|
||||
&& sMi == s * &i
|
||||
&& sMi == &s * i
|
||||
&& sDi == &s / &i
|
||||
&& sDi == s / &i
|
||||
&& sDi == &s / i
|
||||
&& iMs == &i * &s
|
||||
&& iMs == i * &s
|
||||
&& iMs == &i * s
|
||||
&& iDs == &i / &s
|
||||
&& iDs == i / &s
|
||||
&& iDs == &i / s
|
||||
}
|
||||
);
|
||||
|
@ -4,19 +4,17 @@
|
||||
use na::{Point2, Rotation2, Unit, UnitComplex, Vector2};
|
||||
|
||||
quickcheck!(
|
||||
|
||||
/*
|
||||
*
|
||||
* From/to rotation matrix.
|
||||
*
|
||||
*/
|
||||
fn unit_complex_rotation_conversion(c: UnitComplex<f64>) -> bool {
|
||||
let r = c.to_rotation_matrix();
|
||||
let r = c.to_rotation_matrix();
|
||||
let cc = UnitComplex::from_rotation_matrix(&r);
|
||||
let rr = cc.to_rotation_matrix();
|
||||
|
||||
relative_eq!(c, cc, epsilon = 1.0e-7) &&
|
||||
relative_eq!(r, rr, epsilon = 1.0e-7)
|
||||
relative_eq!(c, cc, epsilon = 1.0e-7) && relative_eq!(r, rr, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -25,19 +23,18 @@ quickcheck!(
|
||||
*
|
||||
*/
|
||||
fn unit_complex_transformation(c: UnitComplex<f64>, v: Vector2<f64>, p: Point2<f64>) -> bool {
|
||||
let r = c.to_rotation_matrix();
|
||||
let r = c.to_rotation_matrix();
|
||||
let rv = r * v;
|
||||
let rp = r * p;
|
||||
|
||||
relative_eq!( c * v, rv, epsilon = 1.0e-7) &&
|
||||
relative_eq!( c * &v, rv, epsilon = 1.0e-7) &&
|
||||
relative_eq!(&c * v, rv, epsilon = 1.0e-7) &&
|
||||
relative_eq!(&c * &v, rv, epsilon = 1.0e-7) &&
|
||||
|
||||
relative_eq!( c * p, rp, epsilon = 1.0e-7) &&
|
||||
relative_eq!( c * &p, rp, epsilon = 1.0e-7) &&
|
||||
relative_eq!(&c * p, rp, epsilon = 1.0e-7) &&
|
||||
relative_eq!(&c * &p, rp, epsilon = 1.0e-7)
|
||||
relative_eq!(c * v, rv, epsilon = 1.0e-7)
|
||||
&& relative_eq!(c * &v, rv, epsilon = 1.0e-7)
|
||||
&& relative_eq!(&c * v, rv, epsilon = 1.0e-7)
|
||||
&& relative_eq!(&c * &v, rv, epsilon = 1.0e-7)
|
||||
&& relative_eq!(c * p, rp, epsilon = 1.0e-7)
|
||||
&& relative_eq!(c * &p, rp, epsilon = 1.0e-7)
|
||||
&& relative_eq!(&c * p, rp, epsilon = 1.0e-7)
|
||||
&& relative_eq!(&c * &p, rp, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -47,15 +44,14 @@ quickcheck!(
|
||||
*/
|
||||
fn unit_complex_inv(c: UnitComplex<f64>) -> bool {
|
||||
let iq = c.inverse();
|
||||
relative_eq!(&iq * &c, UnitComplex::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( iq * &c, UnitComplex::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(&iq * c, UnitComplex::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( iq * c, UnitComplex::identity(), epsilon = 1.0e-7) &&
|
||||
|
||||
relative_eq!(&c * &iq, UnitComplex::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( c * &iq, UnitComplex::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!(&c * iq, UnitComplex::identity(), epsilon = 1.0e-7) &&
|
||||
relative_eq!( c * iq, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
relative_eq!(&iq * &c, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(iq * &c, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(&iq * c, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(iq * c, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(&c * &iq, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(c * &iq, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(&c * iq, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
&& relative_eq!(c * iq, UnitComplex::identity(), epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -66,25 +62,30 @@ quickcheck!(
|
||||
fn unit_complex_mul_vector(c: UnitComplex<f64>, v: Vector2<f64>, p: Point2<f64>) -> bool {
|
||||
let r = c.to_rotation_matrix();
|
||||
|
||||
relative_eq!(c * v, r * v, epsilon = 1.0e-7) &&
|
||||
relative_eq!(c * p, r * p, epsilon = 1.0e-7)
|
||||
relative_eq!(c * v, r * v, epsilon = 1.0e-7) && relative_eq!(c * p, r * p, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
// Test that all operators (incl. all combinations of references) work.
|
||||
// See the top comment on `geometry/quaternion_ops.rs` for details on which operations are
|
||||
// supported.
|
||||
fn all_op_exist(uc: UnitComplex<f64>, v: Vector2<f64>, p: Point2<f64>, r: Rotation2<f64>) -> bool {
|
||||
fn all_op_exist(
|
||||
uc: UnitComplex<f64>,
|
||||
v: Vector2<f64>,
|
||||
p: Point2<f64>,
|
||||
r: Rotation2<f64>,
|
||||
) -> bool
|
||||
{
|
||||
let uv = Unit::new_normalize(v);
|
||||
|
||||
let ucMuc = uc * uc;
|
||||
let ucMr = uc * r;
|
||||
let rMuc = r * uc;
|
||||
let ucMr = uc * r;
|
||||
let rMuc = r * uc;
|
||||
let ucDuc = uc / uc;
|
||||
let ucDr = uc / r;
|
||||
let rDuc = r / uc;
|
||||
let ucDr = uc / r;
|
||||
let rDuc = r / uc;
|
||||
|
||||
let ucMp = uc * p;
|
||||
let ucMv = uc * v;
|
||||
let ucMp = uc * p;
|
||||
let ucMv = uc * v;
|
||||
let ucMuv = uc * uv;
|
||||
|
||||
let mut ucMuc1 = uc;
|
||||
@ -111,52 +112,40 @@ quickcheck!(
|
||||
ucDr1 /= r;
|
||||
ucDr2 /= &r;
|
||||
|
||||
ucMuc1 == ucMuc &&
|
||||
ucMuc1 == ucMuc2 &&
|
||||
|
||||
ucMr1 == ucMr &&
|
||||
ucMr1 == ucMr2 &&
|
||||
|
||||
ucDuc1 == ucDuc &&
|
||||
ucDuc1 == ucDuc2 &&
|
||||
|
||||
ucDr1 == ucDr &&
|
||||
ucDr1 == ucDr2 &&
|
||||
|
||||
ucMuc == &uc * &uc &&
|
||||
ucMuc == uc * &uc &&
|
||||
ucMuc == &uc * uc &&
|
||||
|
||||
ucMr == &uc * &r &&
|
||||
ucMr == uc * &r &&
|
||||
ucMr == &uc * r &&
|
||||
|
||||
rMuc == &r * &uc &&
|
||||
rMuc == r * &uc &&
|
||||
rMuc == &r * uc &&
|
||||
|
||||
ucDuc == &uc / &uc &&
|
||||
ucDuc == uc / &uc &&
|
||||
ucDuc == &uc / uc &&
|
||||
|
||||
ucDr == &uc / &r &&
|
||||
ucDr == uc / &r &&
|
||||
ucDr == &uc / r &&
|
||||
|
||||
rDuc == &r / &uc &&
|
||||
rDuc == r / &uc &&
|
||||
rDuc == &r / uc &&
|
||||
|
||||
ucMp == &uc * &p &&
|
||||
ucMp == uc * &p &&
|
||||
ucMp == &uc * p &&
|
||||
|
||||
ucMv == &uc * &v &&
|
||||
ucMv == uc * &v &&
|
||||
ucMv == &uc * v &&
|
||||
|
||||
ucMuv == &uc * &uv &&
|
||||
ucMuv == uc * &uv &&
|
||||
ucMuv == &uc * uv
|
||||
ucMuc1 == ucMuc
|
||||
&& ucMuc1 == ucMuc2
|
||||
&& ucMr1 == ucMr
|
||||
&& ucMr1 == ucMr2
|
||||
&& ucDuc1 == ucDuc
|
||||
&& ucDuc1 == ucDuc2
|
||||
&& ucDr1 == ucDr
|
||||
&& ucDr1 == ucDr2
|
||||
&& ucMuc == &uc * &uc
|
||||
&& ucMuc == uc * &uc
|
||||
&& ucMuc == &uc * uc
|
||||
&& ucMr == &uc * &r
|
||||
&& ucMr == uc * &r
|
||||
&& ucMr == &uc * r
|
||||
&& rMuc == &r * &uc
|
||||
&& rMuc == r * &uc
|
||||
&& rMuc == &r * uc
|
||||
&& ucDuc == &uc / &uc
|
||||
&& ucDuc == uc / &uc
|
||||
&& ucDuc == &uc / uc
|
||||
&& ucDr == &uc / &r
|
||||
&& ucDr == uc / &r
|
||||
&& ucDr == &uc / r
|
||||
&& rDuc == &r / &uc
|
||||
&& rDuc == r / &uc
|
||||
&& rDuc == &r / uc
|
||||
&& ucMp == &uc * &p
|
||||
&& ucMp == uc * &p
|
||||
&& ucMp == &uc * p
|
||||
&& ucMv == &uc * &v
|
||||
&& ucMv == uc * &v
|
||||
&& ucMv == &uc * v
|
||||
&& ucMuv == &uc * &uv
|
||||
&& ucMuv == uc * &uv
|
||||
&& ucMuv == &uc * uv
|
||||
}
|
||||
);
|
||||
|
@ -16,3 +16,5 @@ extern crate serde_json;
|
||||
mod core;
|
||||
mod geometry;
|
||||
mod linalg;
|
||||
#[cfg(feature = "sparse")]
|
||||
mod sparse;
|
||||
|
@ -104,3 +104,89 @@ fn symmetric_eigen_singular_24x24() {
|
||||
epsilon = 1.0e-5
|
||||
));
|
||||
}
|
||||
|
||||
// #[cfg(feature = "arbitrary")]
|
||||
// quickcheck! {
|
||||
// FIXME: full eigendecomposition is not implemented yet because of its complexity when some
|
||||
// eigenvalues have multiplicity > 1.
|
||||
//
|
||||
// /*
|
||||
// * NOTE: for the following tests, we use only upper-triangular matrices.
|
||||
// * Thes ensures the schur decomposition will work, and allows use to test the eigenvector
|
||||
// * computation.
|
||||
// */
|
||||
// fn eigen(n: usize) -> bool {
|
||||
// let n = cmp::max(1, cmp::min(n, 10));
|
||||
// let m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
||||
//
|
||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
||||
// verify_eigenvectors(m, eig)
|
||||
// }
|
||||
//
|
||||
// fn eigen_with_adjascent_duplicate_diagonals(n: usize) -> bool {
|
||||
// let n = cmp::max(1, cmp::min(n, 10));
|
||||
// let mut m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
||||
//
|
||||
// // Suplicate some adjascent diagonal elements.
|
||||
// for i in 0 .. n / 2 {
|
||||
// m[(i * 2 + 1, i * 2 + 1)] = m[(i * 2, i * 2)];
|
||||
// }
|
||||
//
|
||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
||||
// verify_eigenvectors(m, eig)
|
||||
// }
|
||||
//
|
||||
// fn eigen_with_nonadjascent_duplicate_diagonals(n: usize) -> bool {
|
||||
// let n = cmp::max(3, cmp::min(n, 10));
|
||||
// let mut m = DMatrix::<f64>::new_random(n, n).upper_triangle();
|
||||
//
|
||||
// // Suplicate some diagonal elements.
|
||||
// for i in n / 2 .. n {
|
||||
// m[(i, i)] = m[(i - n / 2, i - n / 2)];
|
||||
// }
|
||||
//
|
||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
||||
// verify_eigenvectors(m, eig)
|
||||
// }
|
||||
//
|
||||
// fn eigen_static_square_4x4(m: Matrix4<f64>) -> bool {
|
||||
// let m = m.upper_triangle();
|
||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
||||
// verify_eigenvectors(m, eig)
|
||||
// }
|
||||
//
|
||||
// fn eigen_static_square_3x3(m: Matrix3<f64>) -> bool {
|
||||
// let m = m.upper_triangle();
|
||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
||||
// verify_eigenvectors(m, eig)
|
||||
// }
|
||||
//
|
||||
// fn eigen_static_square_2x2(m: Matrix2<f64>) -> bool {
|
||||
// let m = m.upper_triangle();
|
||||
// println!("{}", m);
|
||||
// let eig = RealEigen::new(m.clone()).unwrap();
|
||||
// verify_eigenvectors(m, eig)
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// fn verify_eigenvectors<D: Dim>(m: MatrixN<f64, D>, mut eig: RealEigen<f64, D>) -> bool
|
||||
// where DefaultAllocator: Allocator<f64, D, D> +
|
||||
// Allocator<f64, D> +
|
||||
// Allocator<usize, D, D> +
|
||||
// Allocator<usize, D>,
|
||||
// MatrixN<f64, D>: Display,
|
||||
// VectorN<f64, D>: Display {
|
||||
// let mv = &m * &eig.eigenvectors;
|
||||
//
|
||||
// println!("eigenvalues: {}eigenvectors: {}", eig.eigenvalues, eig.eigenvectors);
|
||||
//
|
||||
// let dim = m.nrows();
|
||||
// for i in 0 .. dim {
|
||||
// let mut col = eig.eigenvectors.column_mut(i);
|
||||
// col *= eig.eigenvalues[i];
|
||||
// }
|
||||
//
|
||||
// println!("{}{:.5}{:.5}", m, mv, eig.eigenvectors);
|
||||
//
|
||||
// relative_eq!(eig.eigenvectors, mv, epsilon = 1.0e-5)
|
||||
// }
|
||||
|
@ -3,8 +3,10 @@ use na::{DMatrix, Matrix6};
|
||||
|
||||
#[cfg(feature = "arbitrary")]
|
||||
mod quickcheck_tests {
|
||||
use na::{
|
||||
DMatrix, DVector, Matrix2, Matrix2x5, Matrix3, Matrix3x5, Matrix4, Matrix5x2, Matrix5x3,
|
||||
};
|
||||
use std::cmp;
|
||||
use na::{DMatrix, Matrix2, Matrix3, Matrix4, Matrix5x2, Matrix5x3, Matrix2x5, Matrix3x5, DVector};
|
||||
|
||||
quickcheck! {
|
||||
fn svd(m: DMatrix<f64>) -> bool {
|
||||
@ -258,7 +260,6 @@ fn svd_singular_horizontal() {
|
||||
assert!(relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5));
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn svd_zeros() {
|
||||
let m = DMatrix::from_element(10, 10, 0.0);
|
||||
|
75
tests/sparse/cs_cholesky.rs
Normal file
75
tests/sparse/cs_cholesky.rs
Normal file
@ -0,0 +1,75 @@
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
use na::{CsMatrix, CsVector, CsCholesky, Cholesky, Matrix5, Vector5};
|
||||
|
||||
#[test]
|
||||
fn cs_cholesky() {
|
||||
let mut a = Matrix5::new(
|
||||
40.0, 0.0, 0.0, 0.0, 0.0,
|
||||
2.0, 60.0, 0.0, 0.0, 0.0,
|
||||
1.0, 0.0, 11.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 50.0, 0.0,
|
||||
1.0, 0.0, 0.0, 4.0, 10.0
|
||||
);
|
||||
a.fill_upper_triangle_with_lower_triangle();
|
||||
test_cholesky(a);
|
||||
|
||||
let a = Matrix5::from_diagonal(&Vector5::new(40.0, 60.0, 11.0, 50.0, 10.0));
|
||||
test_cholesky(a);
|
||||
|
||||
let mut a = Matrix5::new(
|
||||
40.0, 0.0, 0.0, 0.0, 0.0,
|
||||
2.0, 60.0, 0.0, 0.0, 0.0,
|
||||
1.0, 0.0, 11.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0, 50.0, 0.0,
|
||||
0.0, 0.0, 0.0, 4.0, 10.0
|
||||
);
|
||||
a.fill_upper_triangle_with_lower_triangle();
|
||||
test_cholesky(a);
|
||||
|
||||
let mut a = Matrix5::new(
|
||||
2.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 2.0, 0.0, 0.0, 0.0,
|
||||
1.0, 1.0, 2.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 2.0, 0.0,
|
||||
1.0, 1.0, 0.0, 0.0, 2.0
|
||||
);
|
||||
a.fill_upper_triangle_with_lower_triangle();
|
||||
// Test ::new, left_looking, and up_looking implementations.
|
||||
test_cholesky(a);
|
||||
}
|
||||
|
||||
fn test_cholesky(a: Matrix5<f32>) {
|
||||
// Test ::new
|
||||
test_cholesky_variant(a, 0);
|
||||
// Test up-looking
|
||||
test_cholesky_variant(a, 1);
|
||||
// Test left-looking
|
||||
test_cholesky_variant(a, 2);
|
||||
}
|
||||
|
||||
fn test_cholesky_variant(a: Matrix5<f32>, option: usize) {
|
||||
let cs_a: CsMatrix<_, _, _> = a.into();
|
||||
|
||||
let chol_a = Cholesky::new(a).unwrap();
|
||||
let mut chol_cs_a;
|
||||
|
||||
match option {
|
||||
0 => chol_cs_a = CsCholesky::new(&cs_a),
|
||||
1 => {
|
||||
chol_cs_a = CsCholesky::new_symbolic(&cs_a);
|
||||
chol_cs_a.decompose_up_looking(cs_a.data.values());
|
||||
}
|
||||
_ => {
|
||||
chol_cs_a = CsCholesky::new_symbolic(&cs_a);
|
||||
chol_cs_a.decompose_left_looking(cs_a.data.values());
|
||||
}
|
||||
};
|
||||
|
||||
let l = chol_a.l();
|
||||
let cs_l = chol_cs_a.unwrap_l().unwrap();
|
||||
assert!(cs_l.is_sorted());
|
||||
|
||||
let cs_l_mat: Matrix5<_> = cs_l.into();
|
||||
assert_relative_eq!(l, cs_l_mat);
|
||||
}
|
1
tests/sparse/cs_construction.rs
Normal file
1
tests/sparse/cs_construction.rs
Normal file
@ -0,0 +1 @@
|
||||
|
89
tests/sparse/cs_conversion.rs
Normal file
89
tests/sparse/cs_conversion.rs
Normal file
@ -0,0 +1,89 @@
|
||||
use na::{CsMatrix, DMatrix, Matrix4x5};
|
||||
|
||||
#[test]
|
||||
fn cs_from_to_matrix() {
|
||||
#[cfg_attr(rustfmt, rustfmt_skip)]
|
||||
let m = Matrix4x5::new(
|
||||
5.0, 6.0, 0.0, 8.0, 15.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, 0.0, 13.0, 0.0, 0.0,
|
||||
0.0, 1.0, 4.0, 0.0, 14.0,
|
||||
);
|
||||
|
||||
let cs: CsMatrix<_, _, _> = m.into();
|
||||
assert!(cs.is_sorted());
|
||||
|
||||
let m2: Matrix4x5<_> = cs.into();
|
||||
assert_eq!(m2, m);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cs_matrix_from_triplet() {
|
||||
let mut irows = vec![0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3];
|
||||
let mut icols = vec![0, 1, 3, 4, 0, 1, 2, 3, 2, 1, 2, 4];
|
||||
let mut vals = vec![
|
||||
5.0, 6.0, 8.0, 15.0, 9.0, 10.0, 11.0, 12.0, 13.0, 1.0, 4.0, 14.0,
|
||||
];
|
||||
|
||||
#[cfg_attr(rustfmt, rustfmt_skip)]
|
||||
let expected = DMatrix::from_row_slice(4, 5, &[
|
||||
5.0, 6.0, 0.0, 8.0, 15.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, 0.0, 13.0, 0.0, 0.0,
|
||||
0.0, 1.0, 4.0, 0.0, 14.0,
|
||||
]);
|
||||
let cs_expected = CsMatrix::from_parts(
|
||||
4,
|
||||
5,
|
||||
vec![0, 2, 5, 8, 10],
|
||||
vec![0, 1, 0, 1, 3, 1, 2, 3, 0, 1, 0, 3],
|
||||
vec![
|
||||
5.0, 9.0, 6.0, 10.0, 1.0, 11.0, 13.0, 4.0, 8.0, 12.0, 15.0, 14.0,
|
||||
],
|
||||
);
|
||||
|
||||
let cs_mat = CsMatrix::from_triplet(4, 5, &irows, &icols, &vals);
|
||||
println!("Mat from triplet: {:?}", cs_mat);
|
||||
assert!(cs_mat.is_sorted());
|
||||
assert_eq!(cs_mat, cs_expected);
|
||||
|
||||
let m: DMatrix<_> = cs_mat.into();
|
||||
assert_eq!(m, expected);
|
||||
|
||||
/*
|
||||
* Try again with some permutations.
|
||||
*/
|
||||
let permutations = [(2, 5), (0, 4), (8, 10), (1, 11)];
|
||||
|
||||
for (i, j) in &permutations {
|
||||
irows.swap(*i, *j);
|
||||
icols.swap(*i, *j);
|
||||
vals.swap(*i, *j);
|
||||
}
|
||||
|
||||
let cs_mat = CsMatrix::from_triplet(4, 5, &irows, &icols, &vals);
|
||||
println!("Mat from triplet: {:?}", cs_mat);
|
||||
assert!(cs_mat.is_sorted());
|
||||
assert_eq!(cs_mat, cs_expected);
|
||||
|
||||
let m: DMatrix<_> = cs_mat.into();
|
||||
assert_eq!(m, expected);
|
||||
|
||||
/*
|
||||
* Try again, duplicating all entries.
|
||||
*/
|
||||
let mut ir = irows.clone();
|
||||
let mut ic = icols.clone();
|
||||
let mut va = vals.clone();
|
||||
irows.append(&mut ir);
|
||||
icols.append(&mut ic);
|
||||
vals.append(&mut va);
|
||||
|
||||
let cs_mat = CsMatrix::from_triplet(4, 5, &irows, &icols, &vals);
|
||||
println!("Mat from triplet: {:?}", cs_mat);
|
||||
assert!(cs_mat.is_sorted());
|
||||
assert_eq!(cs_mat, cs_expected * 2.0);
|
||||
|
||||
let m: DMatrix<_> = cs_mat.into();
|
||||
assert_eq!(m, expected * 2.0);
|
||||
}
|
22
tests/sparse/cs_matrix.rs
Normal file
22
tests/sparse/cs_matrix.rs
Normal file
@ -0,0 +1,22 @@
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
use na::{Matrix4x5, Matrix5x4, CsMatrix};
|
||||
|
||||
#[test]
|
||||
fn cs_transpose() {
|
||||
let m = Matrix4x5::new(
|
||||
4.0, 1.0, 4.0, 0.0, 9.0,
|
||||
5.0, 6.0, 0.0, 8.0, 10.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0, 10.0
|
||||
);
|
||||
|
||||
let cs: CsMatrix<_, _, _> = m.into();
|
||||
assert!(cs.is_sorted());
|
||||
|
||||
let cs_transposed = cs.transpose();
|
||||
assert!(cs_transposed.is_sorted());
|
||||
|
||||
let cs_transposed_mat: Matrix5x4<_> = cs_transposed.into();
|
||||
assert_eq!(cs_transposed_mat, m.transpose())
|
||||
}
|
55
tests/sparse/cs_matrix_market.rs
Normal file
55
tests/sparse/cs_matrix_market.rs
Normal file
@ -0,0 +1,55 @@
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
|
||||
use na::io;
|
||||
use na::DMatrix;
|
||||
|
||||
#[test]
|
||||
fn cs_matrix_market() {
|
||||
let file_str = r#"
|
||||
%%MatrixMarket matrix coordinate real general
|
||||
%=================================================================================
|
||||
%
|
||||
% This ASCII file represents a sparse MxN matrix with L
|
||||
% nonzeros in the following Matrix Market format:
|
||||
%
|
||||
% +----------------------------------------------+
|
||||
% |%%MatrixMarket matrix coordinate real general | <--- header line
|
||||
% |% | <--+
|
||||
% |% comments | |-- 0 or more comment lines
|
||||
% |% | <--+
|
||||
% | M N L | <--- rows, columns, entries
|
||||
% | I1 J1 A(I1, J1) | <--+
|
||||
% | I2 J2 A(I2, J2) | |
|
||||
% | I3 J3 A(I3, J3) | |-- L lines
|
||||
% | . . . | |
|
||||
% | IL JL A(IL, JL) | <--+
|
||||
% +----------------------------------------------+
|
||||
%
|
||||
% Indices are 1-based, i.e. A(1,1) is the first element.
|
||||
%
|
||||
%=================================================================================
|
||||
5 5 8
|
||||
1 1 1.000e+00
|
||||
2 2 1.050e+01
|
||||
3 3 1.500e-02
|
||||
1 4 6.000e+00
|
||||
4 2 2.505e+02
|
||||
4 4 -2.800e+02
|
||||
4 5 3.332e+01
|
||||
5 5 1.200e+01
|
||||
"#;
|
||||
|
||||
let cs_mat = io::cs_matrix_from_matrix_market_str(file_str).unwrap();
|
||||
println!("CS mat: {:?}", cs_mat);
|
||||
let mat: DMatrix<_> = cs_mat.into();
|
||||
let expected = DMatrix::from_row_slice(5, 5, &[
|
||||
1.0, 0.0, 0.0, 6.0, 0.0,
|
||||
0.0, 10.5, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.015, 0.0, 0.0,
|
||||
0.0, 250.5, 0.0, -280.0, 33.32,
|
||||
0.0, 0.0, 0.0, 0.0, 12.0,
|
||||
]);
|
||||
|
||||
assert_eq!(mat, expected);
|
||||
}
|
72
tests/sparse/cs_ops.rs
Normal file
72
tests/sparse/cs_ops.rs
Normal file
@ -0,0 +1,72 @@
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
|
||||
use na::{Matrix3x4, Matrix4x5, Matrix3x5, CsMatrix, Vector5, CsVector};
|
||||
|
||||
#[test]
|
||||
fn axpy_cs() {
|
||||
let mut v1 = Vector5::new(1.0, 2.0, 3.0, 4.0, 5.0);
|
||||
let v2 = Vector5::new(10.0, 0.0, 30.0, 0.0, 50.0);
|
||||
let expected = 5.0 * v2 + 10.0 * v1;
|
||||
|
||||
let cs: CsVector<_, _> = v2.into();
|
||||
v1.axpy_cs(5.0, &cs, 10.0);
|
||||
|
||||
assert!(cs.is_sorted());
|
||||
assert_eq!(v1, expected)
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn cs_mat_mul() {
|
||||
let m1 = Matrix3x4::new(
|
||||
0.0, 1.0, 4.0, 0.0,
|
||||
5.0, 6.0, 0.0, 8.0,
|
||||
9.0, 10.0, 11.0, 12.0,
|
||||
);
|
||||
|
||||
let m2 = Matrix4x5::new(
|
||||
5.0, 6.0, 0.0, 8.0, 15.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, 0.0, 13.0, 0.0, 0.0,
|
||||
0.0, 1.0, 4.0, 0.0, 14.0,
|
||||
);
|
||||
|
||||
let sm1: CsMatrix<_, _, _> = m1.into();
|
||||
let sm2: CsMatrix<_, _, _> = m2.into();
|
||||
|
||||
let mul = &sm1 * &sm2;
|
||||
|
||||
assert!(sm1.is_sorted());
|
||||
assert!(sm2.is_sorted());
|
||||
assert!(mul.is_sorted());
|
||||
assert_eq!(Matrix3x5::from(mul), m1 * m2);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn cs_mat_add() {
|
||||
let m1 = Matrix4x5::new(
|
||||
4.0, 1.0, 4.0, 0.0, 0.0,
|
||||
5.0, 6.0, 0.0, 8.0, 0.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0, 10.0
|
||||
);
|
||||
|
||||
let m2 = Matrix4x5::new(
|
||||
0.0, 1.0, 4.0, 0.0, 14.0,
|
||||
5.0, 6.0, 0.0, 8.0, 15.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, 0.0, 13.0, 0.0, 0.0,
|
||||
);
|
||||
|
||||
let sm1: CsMatrix<_, _, _> = m1.into();
|
||||
let sm2: CsMatrix<_, _, _> = m2.into();
|
||||
|
||||
let sum = &sm1 + &sm2;
|
||||
|
||||
assert!(sm1.is_sorted());
|
||||
assert!(sm2.is_sorted());
|
||||
assert!(sum.is_sorted());
|
||||
assert_eq!(Matrix4x5::from(sum), m1 + m2);
|
||||
}
|
106
tests/sparse/cs_solve.rs
Normal file
106
tests/sparse/cs_solve.rs
Normal file
@ -0,0 +1,106 @@
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
use na::{CsMatrix, CsVector, Matrix5, Vector5};
|
||||
|
||||
|
||||
#[test]
|
||||
fn cs_lower_triangular_solve() {
|
||||
let a = Matrix5::new(
|
||||
4.0, 1.0, 4.0, 0.0, 9.0,
|
||||
5.0, 6.0, 0.0, 8.0, 10.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, -8.0, 3.0, 5.0, 9.0,
|
||||
0.0, 0.0, 1.0, 0.0, -10.0
|
||||
);
|
||||
let b = Vector5::new(1.0, 2.0, 3.0, 4.0, 5.0);
|
||||
|
||||
let cs_a: CsMatrix<_, _, _> = a.into();
|
||||
|
||||
assert_eq!(cs_a.solve_lower_triangular(&b), a.solve_lower_triangular(&b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cs_tr_lower_triangular_solve() {
|
||||
let a = Matrix5::new(
|
||||
4.0, 1.0, 4.0, 0.0, 9.0,
|
||||
5.0, 6.0, 0.0, 8.0, 10.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, -8.0, 3.0, 5.0, 9.0,
|
||||
0.0, 0.0, 1.0, 0.0, -10.0
|
||||
);
|
||||
let b = Vector5::new(1.0, 2.0, 3.0, 4.0, 5.0);
|
||||
|
||||
let cs_a: CsMatrix<_, _, _> = a.into();
|
||||
|
||||
assert!(cs_a.tr_solve_lower_triangular(&b).is_some());
|
||||
assert_eq!(cs_a.tr_solve_lower_triangular(&b), a.tr_solve_lower_triangular(&b));
|
||||
|
||||
// Singular case.
|
||||
let a = Matrix5::new(
|
||||
4.0, 1.0, 4.0, 0.0, 9.0,
|
||||
5.0, 6.0, 0.0, 8.0, 10.0,
|
||||
9.0, 10.0, 0.0, 12.0, 0.0,
|
||||
0.0, -8.0, 3.0, 5.0, 9.0,
|
||||
0.0, 0.0, 1.0, 0.0, -10.0
|
||||
);
|
||||
let cs_a: CsMatrix<_, _, _> = a.into();
|
||||
|
||||
assert!(cs_a.tr_solve_lower_triangular(&b).is_none());
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn cs_lower_triangular_solve_cs() {
|
||||
let a = Matrix5::new(
|
||||
4.0, 1.0, 4.0, 0.0, 9.0,
|
||||
5.0, 6.0, 0.0, 8.0, 10.0,
|
||||
9.0, 10.0, 11.0, 12.0, 0.0,
|
||||
0.0, -8.0, 3.0, 5.0, 9.0,
|
||||
0.0, 0.0, 1.0, 0.0, -10.0
|
||||
);
|
||||
let b1 = Vector5::zeros();
|
||||
let b2 = Vector5::new(1.0, 2.0, 3.0, 4.0, 5.0);
|
||||
let b3 = Vector5::new(1.0, 0.0, 0.0, 4.0, 0.0);
|
||||
let b4 = Vector5::new(0.0, 1.0, 0.0, 4.0, 5.0);
|
||||
let b5 = Vector5::x();
|
||||
let b6 = Vector5::y();
|
||||
let b7 = Vector5::z();
|
||||
let b8 = Vector5::w();
|
||||
let b9 = Vector5::a();
|
||||
|
||||
let cs_a: CsMatrix<_, _, _> = a.into();
|
||||
let cs_b1: CsVector<_, _> = Vector5::zeros().into();
|
||||
let cs_b2: CsVector<_, _> = Vector5::new(1.0, 2.0, 3.0, 4.0, 5.0).into();
|
||||
let cs_b3: CsVector<_, _> = Vector5::new(1.0, 0.0, 0.0, 4.0, 0.0).into();
|
||||
let cs_b4: CsVector<_, _> = Vector5::new(0.0, 1.0, 0.0, 4.0, 5.0).into();
|
||||
let cs_b5: CsVector<_, _> = Vector5::x().into();
|
||||
let cs_b6: CsVector<_, _> = Vector5::y().into();
|
||||
let cs_b7: CsVector<_, _> = Vector5::z().into();
|
||||
let cs_b8: CsVector<_, _> = Vector5::w().into();
|
||||
let cs_b9: CsVector<_, _> = Vector5::a().into();
|
||||
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b1).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b1));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b5).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b5));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b6).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b6));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b7).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b7));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b8).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b8));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b9).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b9));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b2).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b2));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b3).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b3));
|
||||
assert_eq!(cs_a.solve_lower_triangular_cs(&cs_b4).map(|v| { assert!(v.is_sorted()); v.into() }), a.solve_lower_triangular(&b4));
|
||||
|
||||
|
||||
// Singular case.
|
||||
let a = Matrix5::new(
|
||||
4.0, 1.0, 4.0, 0.0, 9.0,
|
||||
5.0, 0.0, 0.0, 8.0, 10.0,
|
||||
9.0, 10.0, 0.0, 12.0, 0.0,
|
||||
0.0, -8.0, 3.0, 5.0, 9.0,
|
||||
0.0, 0.0, 1.0, 0.0, -10.0
|
||||
);
|
||||
let cs_a: CsMatrix<_, _, _> = a.into();
|
||||
|
||||
assert!(cs_a.solve_lower_triangular_cs(&cs_b2).is_none());
|
||||
assert!(cs_a.solve_lower_triangular_cs(&cs_b3).is_none());
|
||||
assert!(cs_a.solve_lower_triangular_cs(&cs_b4).is_none());
|
||||
}
|
8
tests/sparse/mod.rs
Normal file
8
tests/sparse/mod.rs
Normal file
@ -0,0 +1,8 @@
|
||||
mod cs_cholesky;
|
||||
mod cs_construction;
|
||||
mod cs_conversion;
|
||||
mod cs_matrix;
|
||||
#[cfg(feature = "io")]
|
||||
mod cs_matrix_market;
|
||||
mod cs_ops;
|
||||
mod cs_solve;
|
Loading…
Reference in New Issue
Block a user