forked from M-Labs/nalgebra
Doc: fix some typos.
This commit is contained in:
parent
cbebbe8961
commit
79008262cb
@ -271,7 +271,7 @@ pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||||
/// pub main() {
|
||||
/// let t = Rot3::new(Vec3::new(0.0, 0.0, 0.0));
|
||||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||||
/// let rt = na::preend_rotation(&t, &v);
|
||||
/// let rt = na::prepend_rotation(&t, &v);
|
||||
///
|
||||
/// assert!(na::rotation(&rt) == Vec3::new(1.0, 1.0, 1.0))
|
||||
/// }
|
||||
@ -331,7 +331,7 @@ pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||||
* RotationWithTranslation<LV, AV>
|
||||
*/
|
||||
|
||||
/// Rotates a copy of `m` by `amount` using `center` ase the pivot point.
|
||||
/// Rotates a copy of `m` by `amount` using `center` as the pivot point.
|
||||
#[inline(always)]
|
||||
pub fn append_rotation_wrt_point<LV: Neg<LV>,
|
||||
AV,
|
||||
@ -473,7 +473,7 @@ pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||||
* ToHomogeneous<U>
|
||||
*/
|
||||
|
||||
/// Converts a matrix or vector to homogoneous coordinates.
|
||||
/// Converts a matrix or vector to homogeneous coordinates.
|
||||
#[inline(always)]
|
||||
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||||
ToHomogeneous::to_homogeneous(m)
|
||||
@ -483,7 +483,7 @@ pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||||
* FromHomogeneous<U>
|
||||
*/
|
||||
|
||||
/// Converts a matrix or vector from homogoneous coordinates.
|
||||
/// Converts a matrix or vector from homogeneous coordinates.
|
||||
///
|
||||
/// w-normalization is appied.
|
||||
#[inline(always)]
|
||||
|
@ -1,6 +1,6 @@
|
||||
use lower_triangular::LowerTriangularMat;
|
||||
|
||||
pub trait Crout<N> {
|
||||
/// Crout LDL* factorization for a symetric definite indefinite matrix.
|
||||
/// Crout LDL* factorization for a symmetric definite indefinite matrix.
|
||||
fn crout(self, &mut DiagonalMat<N>) -> LowerTriangularMat<N>;
|
||||
}
|
||||
|
@ -189,8 +189,8 @@ impl<N: One + Zero + Clone> DMat<N> {
|
||||
/// Builds an identity matrix.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
|
||||
/// components.
|
||||
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
|
||||
/// components.
|
||||
#[inline]
|
||||
pub fn new_identity(dim: uint) -> DMat<N> {
|
||||
let mut res = DMat::new_zeros(dim, dim);
|
||||
@ -232,8 +232,8 @@ impl<N: Clone> DMat<N> {
|
||||
/// Reads the value of a component of the matrix.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `row` - 0-based index of the line to be read
|
||||
/// * `col` - 0-based index of the column to be read
|
||||
/// * `row` - 0-based index of the line to be read
|
||||
/// * `col` - 0-based index of the column to be read
|
||||
#[inline]
|
||||
pub fn at(&self, row: uint, col: uint) -> N {
|
||||
assert!(row < self.nrows);
|
||||
|
@ -36,7 +36,7 @@ impl<N: Zero + Clone> DVec<N> {
|
||||
/// Builds a vector filled with zeros.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the vector.
|
||||
/// * `dim` - The dimension of the vector.
|
||||
#[inline]
|
||||
pub fn new_zeros(dim: uint) -> DVec<N> {
|
||||
DVec::from_elem(dim, Zero::zero())
|
||||
@ -60,7 +60,7 @@ impl<N: One + Clone> DVec<N> {
|
||||
/// Builds a vector filled with ones.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the vector.
|
||||
/// * `dim` - The dimension of the vector.
|
||||
#[inline]
|
||||
pub fn new_ones(dim: uint) -> DVec<N> {
|
||||
DVec::from_elem(dim, One::one())
|
||||
@ -92,7 +92,7 @@ impl<N> DVec<N> {
|
||||
*self.at.unsafe_mut_ref(i) = val
|
||||
}
|
||||
|
||||
/// Gets a reference to of this vector datas.
|
||||
/// Gets a reference to of this vector data.
|
||||
#[inline]
|
||||
pub fn as_vec<'r>(&'r self) -> &'r [N] {
|
||||
let data: &'r [N] = self.at;
|
||||
@ -100,7 +100,7 @@ impl<N> DVec<N> {
|
||||
data
|
||||
}
|
||||
|
||||
/// Gets a mutable reference to of this vector datas.
|
||||
/// Gets a mutable reference to of this vector data.
|
||||
#[inline]
|
||||
pub fn as_mut_vec<'r>(&'r mut self) -> &'r mut [N] {
|
||||
let data: &'r mut [N] = self.at;
|
||||
@ -108,7 +108,7 @@ impl<N> DVec<N> {
|
||||
data
|
||||
}
|
||||
|
||||
/// Extracts this vector datas.
|
||||
/// Extracts this vector data.
|
||||
#[inline]
|
||||
pub fn to_vec(self) -> ~[N] {
|
||||
self.at
|
||||
@ -179,7 +179,7 @@ impl<N> FromIterator<N> for DVec<N> {
|
||||
|
||||
impl<N: Clone + Num + Real + ApproxEq<N> + DVecMulRhs<N, DVec<N>>> DVec<N> {
|
||||
/// Computes the canonical basis for the given dimension. A canonical basis is a set of
|
||||
/// vectors, mutually orthogonal, with all its component equal to 0.0 exept one which is equal
|
||||
/// vectors, mutually orthogonal, with all its component equal to 0.0 except one which is equal
|
||||
/// to 1.0.
|
||||
pub fn canonical_basis_with_dim(dim: uint) -> ~[DVec<N>] {
|
||||
let mut res : ~[DVec<N>] = ~[];
|
||||
|
@ -153,7 +153,7 @@ pub trait RotationMatrix<LV, AV, M: Mat<LV, LV> + Rotation<AV>> : Rotation<AV> {
|
||||
pub trait AbsoluteRotate<V> {
|
||||
/// This is the same as:
|
||||
///
|
||||
/// ~~~{.rust}
|
||||
/// ~~~
|
||||
/// self.rotation_matrix().absolute().rmul(v)
|
||||
/// ~~~
|
||||
fn absolute_rotate(&self, v: &V) -> V;
|
||||
@ -208,7 +208,7 @@ pub trait Dot<N> {
|
||||
* computing intermediate vectors.
|
||||
* The following equation must be verified:
|
||||
*
|
||||
* ~~~{.rust}
|
||||
* ~~~
|
||||
* a.sub_dot(b, c) == (a - b).dot(c)
|
||||
* ~~~
|
||||
*
|
||||
|
Loading…
Reference in New Issue
Block a user