forked from M-Labs/nalgebra
Fix unused_result lint errors.
This commit is contained in:
parent
c235728fb0
commit
740d19437c
@ -1,4 +1,5 @@
|
||||
#![feature(test)]
|
||||
#![allow(unused_macros)]
|
||||
|
||||
extern crate test;
|
||||
extern crate rand;
|
||||
|
@ -215,7 +215,7 @@ impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
||||
match Self::dimension() {
|
||||
1 => {
|
||||
if vs.len() == 0 {
|
||||
f(&Self::canonical_basis_element(0));
|
||||
let _ = f(&Self::canonical_basis_element(0));
|
||||
}
|
||||
},
|
||||
2 => {
|
||||
@ -227,7 +227,7 @@ impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
||||
let v = &vs[0];
|
||||
let res = Self::from_column_slice(&[-v[1], v[0]]);
|
||||
|
||||
f(&res.normalize());
|
||||
let _ = f(&res.normalize());
|
||||
}
|
||||
|
||||
// Otherwise, nothing.
|
||||
@ -252,11 +252,11 @@ impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
||||
let _ = a.normalize_mut();
|
||||
|
||||
if f(&a.cross(v)) {
|
||||
f(&a);
|
||||
let _ = f(&a);
|
||||
}
|
||||
}
|
||||
else if vs.len() == 2 {
|
||||
f(&vs[0].cross(&vs[1]).normalize());
|
||||
let _ = f(&vs[0].cross(&vs[1]).normalize());
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
|
@ -144,7 +144,7 @@ macro_rules! componentwise_binop_impl(
|
||||
if self.data.is_contiguous() && rhs.data.is_contiguous() && out.data.is_contiguous() {
|
||||
let arr1 = self.data.as_slice();
|
||||
let arr2 = rhs.data.as_slice();
|
||||
let mut out = out.data.as_mut_slice();
|
||||
let out = out.data.as_mut_slice();
|
||||
for i in 0 .. arr1.len() {
|
||||
unsafe {
|
||||
*out.get_unchecked_mut(i) = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
|
||||
@ -175,7 +175,7 @@ macro_rules! componentwise_binop_impl(
|
||||
// This is the most common case and should be deduced at compile-time.
|
||||
// FIXME: use specialization instead?
|
||||
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
||||
let mut arr1 = self.data.as_mut_slice();
|
||||
let arr1 = self.data.as_mut_slice();
|
||||
let arr2 = rhs.data.as_slice();
|
||||
for i in 0 .. arr2.len() {
|
||||
unsafe {
|
||||
@ -206,7 +206,7 @@ macro_rules! componentwise_binop_impl(
|
||||
// FIXME: use specialization instead?
|
||||
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
||||
let arr1 = self.data.as_slice();
|
||||
let mut arr2 = rhs.data.as_mut_slice();
|
||||
let arr2 = rhs.data.as_mut_slice();
|
||||
for i in 0 .. arr1.len() {
|
||||
unsafe {
|
||||
let res = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
|
||||
@ -218,7 +218,7 @@ macro_rules! componentwise_binop_impl(
|
||||
for j in 0 .. self.ncols() {
|
||||
for i in 0 .. self.nrows() {
|
||||
unsafe {
|
||||
let mut r = rhs.get_unchecked_mut(i, j);
|
||||
let r = rhs.get_unchecked_mut(i, j);
|
||||
*r = self.get_unchecked(i, j).$method(*r)
|
||||
}
|
||||
}
|
||||
|
@ -104,8 +104,8 @@ impl<N: Real, D: DimSub<Dynamic>> Cholesky<N, D>
|
||||
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
||||
where S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||||
self.chol.solve_lower_triangular_mut(b);
|
||||
self.chol.tr_solve_lower_triangular_mut(b);
|
||||
let _ = self.chol.solve_lower_triangular_mut(b);
|
||||
let _ = self.chol.tr_solve_lower_triangular_mut(b);
|
||||
}
|
||||
|
||||
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
|
||||
|
@ -175,8 +175,8 @@ impl<N: Real, D: DimMin<D, Output = D>> FullPivLU<N, D, D>
|
||||
|
||||
if self.is_invertible() {
|
||||
self.p.permute_rows(b);
|
||||
self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
||||
self.lu.solve_upper_triangular_mut(b);
|
||||
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
||||
let _ = self.lu.solve_upper_triangular_mut(b);
|
||||
self.q.inv_permute_rows(b);
|
||||
|
||||
true
|
||||
|
@ -73,7 +73,7 @@ pub fn try_invert_to<N: Real, D: Dim, S>(mut matrix: MatrixN<N, D>,
|
||||
}
|
||||
}
|
||||
|
||||
matrix.solve_lower_triangular_with_diag_mut(out, N::one());
|
||||
let _ = matrix.solve_lower_triangular_with_diag_mut(out, N::one());
|
||||
matrix.solve_upper_triangular_mut(out)
|
||||
}
|
||||
|
||||
@ -216,7 +216,7 @@ impl<N: Real, D: DimMin<D, Output = D>> LU<N, D, D>
|
||||
assert!(self.lu.is_square(), "LU solve: unable to solve a non-square system.");
|
||||
|
||||
self.p.permute_rows(b);
|
||||
self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
||||
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
||||
self.lu.solve_upper_triangular_mut(b)
|
||||
}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
//! Factorization of real matrices.
|
||||
//! [Reexported at the root of this crate.] Factorization of real matrices.
|
||||
|
||||
mod solve;
|
||||
mod determinant;
|
||||
|
Loading…
Reference in New Issue
Block a user