forked from M-Labs/nalgebra
Fix unused_result lint errors.
This commit is contained in:
parent
c235728fb0
commit
740d19437c
@ -1,4 +1,5 @@
|
|||||||
#![feature(test)]
|
#![feature(test)]
|
||||||
|
#![allow(unused_macros)]
|
||||||
|
|
||||||
extern crate test;
|
extern crate test;
|
||||||
extern crate rand;
|
extern crate rand;
|
||||||
|
@ -215,7 +215,7 @@ impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
|||||||
match Self::dimension() {
|
match Self::dimension() {
|
||||||
1 => {
|
1 => {
|
||||||
if vs.len() == 0 {
|
if vs.len() == 0 {
|
||||||
f(&Self::canonical_basis_element(0));
|
let _ = f(&Self::canonical_basis_element(0));
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
2 => {
|
2 => {
|
||||||
@ -227,7 +227,7 @@ impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
|||||||
let v = &vs[0];
|
let v = &vs[0];
|
||||||
let res = Self::from_column_slice(&[-v[1], v[0]]);
|
let res = Self::from_column_slice(&[-v[1], v[0]]);
|
||||||
|
|
||||||
f(&res.normalize());
|
let _ = f(&res.normalize());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Otherwise, nothing.
|
// Otherwise, nothing.
|
||||||
@ -252,11 +252,11 @@ impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
|
|||||||
let _ = a.normalize_mut();
|
let _ = a.normalize_mut();
|
||||||
|
|
||||||
if f(&a.cross(v)) {
|
if f(&a.cross(v)) {
|
||||||
f(&a);
|
let _ = f(&a);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else if vs.len() == 2 {
|
else if vs.len() == 2 {
|
||||||
f(&vs[0].cross(&vs[1]).normalize());
|
let _ = f(&vs[0].cross(&vs[1]).normalize());
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
_ => {
|
_ => {
|
||||||
|
@ -144,7 +144,7 @@ macro_rules! componentwise_binop_impl(
|
|||||||
if self.data.is_contiguous() && rhs.data.is_contiguous() && out.data.is_contiguous() {
|
if self.data.is_contiguous() && rhs.data.is_contiguous() && out.data.is_contiguous() {
|
||||||
let arr1 = self.data.as_slice();
|
let arr1 = self.data.as_slice();
|
||||||
let arr2 = rhs.data.as_slice();
|
let arr2 = rhs.data.as_slice();
|
||||||
let mut out = out.data.as_mut_slice();
|
let out = out.data.as_mut_slice();
|
||||||
for i in 0 .. arr1.len() {
|
for i in 0 .. arr1.len() {
|
||||||
unsafe {
|
unsafe {
|
||||||
*out.get_unchecked_mut(i) = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
|
*out.get_unchecked_mut(i) = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
|
||||||
@ -175,7 +175,7 @@ macro_rules! componentwise_binop_impl(
|
|||||||
// This is the most common case and should be deduced at compile-time.
|
// This is the most common case and should be deduced at compile-time.
|
||||||
// FIXME: use specialization instead?
|
// FIXME: use specialization instead?
|
||||||
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
||||||
let mut arr1 = self.data.as_mut_slice();
|
let arr1 = self.data.as_mut_slice();
|
||||||
let arr2 = rhs.data.as_slice();
|
let arr2 = rhs.data.as_slice();
|
||||||
for i in 0 .. arr2.len() {
|
for i in 0 .. arr2.len() {
|
||||||
unsafe {
|
unsafe {
|
||||||
@ -206,7 +206,7 @@ macro_rules! componentwise_binop_impl(
|
|||||||
// FIXME: use specialization instead?
|
// FIXME: use specialization instead?
|
||||||
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
if self.data.is_contiguous() && rhs.data.is_contiguous() {
|
||||||
let arr1 = self.data.as_slice();
|
let arr1 = self.data.as_slice();
|
||||||
let mut arr2 = rhs.data.as_mut_slice();
|
let arr2 = rhs.data.as_mut_slice();
|
||||||
for i in 0 .. arr1.len() {
|
for i in 0 .. arr1.len() {
|
||||||
unsafe {
|
unsafe {
|
||||||
let res = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
|
let res = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
|
||||||
@ -218,7 +218,7 @@ macro_rules! componentwise_binop_impl(
|
|||||||
for j in 0 .. self.ncols() {
|
for j in 0 .. self.ncols() {
|
||||||
for i in 0 .. self.nrows() {
|
for i in 0 .. self.nrows() {
|
||||||
unsafe {
|
unsafe {
|
||||||
let mut r = rhs.get_unchecked_mut(i, j);
|
let r = rhs.get_unchecked_mut(i, j);
|
||||||
*r = self.get_unchecked(i, j).$method(*r)
|
*r = self.get_unchecked(i, j).$method(*r)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -104,8 +104,8 @@ impl<N: Real, D: DimSub<Dynamic>> Cholesky<N, D>
|
|||||||
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
||||||
where S2: StorageMut<N, R2, C2>,
|
where S2: StorageMut<N, R2, C2>,
|
||||||
ShapeConstraint: SameNumberOfRows<R2, D> {
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||||||
self.chol.solve_lower_triangular_mut(b);
|
let _ = self.chol.solve_lower_triangular_mut(b);
|
||||||
self.chol.tr_solve_lower_triangular_mut(b);
|
let _ = self.chol.tr_solve_lower_triangular_mut(b);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
|
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
|
||||||
|
@ -175,8 +175,8 @@ impl<N: Real, D: DimMin<D, Output = D>> FullPivLU<N, D, D>
|
|||||||
|
|
||||||
if self.is_invertible() {
|
if self.is_invertible() {
|
||||||
self.p.permute_rows(b);
|
self.p.permute_rows(b);
|
||||||
self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
||||||
self.lu.solve_upper_triangular_mut(b);
|
let _ = self.lu.solve_upper_triangular_mut(b);
|
||||||
self.q.inv_permute_rows(b);
|
self.q.inv_permute_rows(b);
|
||||||
|
|
||||||
true
|
true
|
||||||
|
@ -73,7 +73,7 @@ pub fn try_invert_to<N: Real, D: Dim, S>(mut matrix: MatrixN<N, D>,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
matrix.solve_lower_triangular_with_diag_mut(out, N::one());
|
let _ = matrix.solve_lower_triangular_with_diag_mut(out, N::one());
|
||||||
matrix.solve_upper_triangular_mut(out)
|
matrix.solve_upper_triangular_mut(out)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -216,7 +216,7 @@ impl<N: Real, D: DimMin<D, Output = D>> LU<N, D, D>
|
|||||||
assert!(self.lu.is_square(), "LU solve: unable to solve a non-square system.");
|
assert!(self.lu.is_square(), "LU solve: unable to solve a non-square system.");
|
||||||
|
|
||||||
self.p.permute_rows(b);
|
self.p.permute_rows(b);
|
||||||
self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
||||||
self.lu.solve_upper_triangular_mut(b)
|
self.lu.solve_upper_triangular_mut(b)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
//! Factorization of real matrices.
|
//! [Reexported at the root of this crate.] Factorization of real matrices.
|
||||||
|
|
||||||
mod solve;
|
mod solve;
|
||||||
mod determinant;
|
mod determinant;
|
||||||
|
Loading…
Reference in New Issue
Block a user