forked from M-Labs/nalgebra
rank update passed tests
This commit is contained in:
parent
96c16af66f
commit
7347d467ae
@ -8,7 +8,6 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix};
|
|||||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||||
use crate::dimension::{Dim, DimSub, Dynamic, U1};
|
use crate::dimension::{Dim, DimSub, Dynamic, U1};
|
||||||
use crate::storage::{Storage, StorageMut};
|
use crate::storage::{Storage, StorageMut};
|
||||||
use crate::RealField;
|
|
||||||
|
|
||||||
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
|
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
|
||||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||||
@ -149,33 +148,35 @@ where
|
|||||||
|
|
||||||
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
||||||
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v^*`.
|
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v^*`.
|
||||||
/// TODO insures that code is correct for complex numbers, eigen uses abs2 and conj
|
pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Matrix<N, R2, U1, S2>, sigma: N::RealField)
|
||||||
/// https://eigen.tuxfamily.org/dox/LLT_8h_source.html
|
where
|
||||||
pub fn rank_one_update<R2: Dim, S2, N2: RealField>(
|
|
||||||
&mut self,
|
|
||||||
x: &Matrix<N, R2, U1, S2>,
|
|
||||||
sigma: N2,
|
|
||||||
) where
|
|
||||||
N: From<N2>,
|
|
||||||
S2: Storage<N, R2, U1>,
|
S2: Storage<N, R2, U1>,
|
||||||
DefaultAllocator: Allocator<N, R2, U1>,
|
DefaultAllocator: Allocator<N, R2, U1>,
|
||||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||||
{
|
{
|
||||||
let sigma = <N>::from(sigma);
|
// for a description of the operation, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
|
||||||
|
// heavily inspired by Eigen's implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
|
||||||
|
// TODO use unsafe { *matrix.get_unchecked((j, j)) }
|
||||||
let n = x.nrows();
|
let n = x.nrows();
|
||||||
let mut temp = x.clone_owned();
|
let mut temp = x.clone_owned();
|
||||||
for k in 0..n {
|
let mut beta = crate::one::<N::RealField>();
|
||||||
let lkk = self.chol[(k, k)]; // TODO unsafe { *matrix.get_unchecked((j, j)) }
|
for j in 0..n {
|
||||||
let xk = temp[k];
|
let ljj = N::real(self.chol[(j, j)]);
|
||||||
let r = (lkk * lkk + sigma * xk * xk).sqrt();
|
let dj = ljj * ljj;
|
||||||
let c = r / lkk;
|
let wj = temp[j];
|
||||||
let s = xk / lkk;
|
let swj2 = sigma * N::modulus_squared(wj);
|
||||||
self.chol[(k, k)] = r;
|
let gamma = dj * beta + swj2;
|
||||||
|
let nljj = (dj + swj2 / beta).sqrt();
|
||||||
|
self.chol[(j, j)] = N::from_real(nljj);
|
||||||
|
beta += swj2 / dj;
|
||||||
// Update the terms of L
|
// Update the terms of L
|
||||||
if k < n {
|
if j < n {
|
||||||
for k2 in (k + 1)..n {
|
for k in (j + 1)..n {
|
||||||
self.chol[(k2, k)] = (self.chol[(k2, k)] + sigma * s * temp[k2]) / c;
|
temp[k] -= (wj / N::from_real(ljj)) * self.chol[(k, j)];
|
||||||
temp[k2] = c * temp[k2] - s * self.chol[(k2, k)];
|
if gamma != crate::zero::<N::RealField>() {
|
||||||
|
self.chol[(k, j)] = N::from_real(nljj / ljj) * self.chol[(k, j)]
|
||||||
|
+ (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp[k];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -79,10 +79,8 @@ macro_rules! gen_tests(
|
|||||||
}
|
}
|
||||||
|
|
||||||
fn cholesky_rank_one_update(_n: usize) -> bool {
|
fn cholesky_rank_one_update(_n: usize) -> bool {
|
||||||
use nalgebra::dimension::U3;
|
let mut m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
||||||
use nalgebra::Vector3;
|
let x = Vector4::<$scalar>::new_random().map(|e| e.0);
|
||||||
let mut m = RandomSDP::new(U3, || random::<$scalar>().0).unwrap();
|
|
||||||
let x = Vector3::<$scalar>::new_random().map(|e| e.0);
|
|
||||||
|
|
||||||
// TODO this is dirty but $scalar appears to not be a scalar type in this file
|
// TODO this is dirty but $scalar appears to not be a scalar type in this file
|
||||||
let zero = random::<$scalar>().0 * 0.;
|
let zero = random::<$scalar>().0 * 0.;
|
||||||
@ -96,11 +94,7 @@ macro_rules! gen_tests(
|
|||||||
let m_chol_updated = chol.l() * chol.l().adjoint();
|
let m_chol_updated = chol.l() * chol.l().adjoint();
|
||||||
|
|
||||||
// updates m manually
|
// updates m manually
|
||||||
m.ger(sigma_scalar, &x, &x, one); // m += sigma * x * x.adjoint()
|
m.gerc(sigma_scalar, &x, &x, one); // m += sigma * x * x.adjoint()
|
||||||
|
|
||||||
println!("sigma : {}", sigma);
|
|
||||||
println!("m updated : {}", m);
|
|
||||||
println!("chol : {}", m_chol_updated);
|
|
||||||
|
|
||||||
relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)
|
relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user