diff --git a/.circleci/config.yml b/.circleci/config.yml index e5be1145..f0c28f6f 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -60,7 +60,7 @@ jobs: command: cargo test --features arbitrary --features serde-serialize --features abomonation-serialize --features sparse --features debug --features io --features compare --features libm --features proptest-support --features slow-tests - run: name: test nalgebra-glm - command: cargo test -p nalgebra-glm --features arbitrary --features serde-serialize --features abomonation-serialize --features sparse --features debug --features io --features compare --features libm --features slow-tests + command: cargo test -p nalgebra-glm --features arbitrary --features serde-serialize --features abomonation-serialize --features sparse --features debug --features io --features compare --features libm --features proptest-support --features slow-tests - run: name: test nalgebra-sparse # Manifest-path is necessary because cargo otherwise won't correctly forward features diff --git a/Cargo.toml b/Cargo.toml index c753a350..67747f33 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -23,8 +23,7 @@ path = "src/lib.rs" [features] default = [ "std" ] -std = [ "matrixmultiply", "rand/std", "rand_distr", "simba/std" ] -stdweb = [ "rand/stdweb" ] +std = [ "matrixmultiply", "rand/std", "rand/std_rng", "rand_distr", "simba/std" ] arbitrary = [ "quickcheck" ] serde-serialize = [ "serde", "num-complex/serde" ] abomonation-serialize = [ "abomonation" ] @@ -44,29 +43,29 @@ slow-tests = [] [dependencies] typenum = "1.12" generic-array = "0.14" -rand = { version = "0.7", default-features = false } +rand = { version = "0.8", default-features = false } num-traits = { version = "0.2", default-features = false } num-complex = { version = "0.3", default-features = false } num-rational = { version = "0.3", default-features = false } approx = { version = "0.4", default-features = false } -simba = { version = "0.3", default-features = false } +simba = { version = "0.4", default-features = false } alga = { version = "0.9", default-features = false, optional = true } -rand_distr = { version = "0.3", optional = true } -matrixmultiply = { version = "0.2", optional = true } +rand_distr = { version = "0.4", optional = true } +matrixmultiply = { version = "0.3", optional = true } serde = { version = "1.0", default-features = false, features = [ "derive" ], optional = true } abomonation = { version = "0.7", optional = true } mint = { version = "0.5", optional = true } -quickcheck = { version = "0.9", optional = true } +quickcheck = { version = "1", optional = true } pest = { version = "2", optional = true } pest_derive = { version = "2", optional = true } bytemuck = { version = "1.5", optional = true } matrixcompare-core = { version = "0.1", optional = true } -proptest = { version = "0.10", optional = true, default-features = false, features = ["std"] } +proptest = { version = "1", optional = true, default-features = false, features = ["std"] } [dev-dependencies] serde_json = "1.0" -rand_xorshift = "0.2" -rand_isaac = "0.2" +rand_xorshift = "0.3" +rand_isaac = "0.3" ### Uncomment this line before running benchmarks. ### We can't just let this uncommented because that would break ### compilation for #[no-std] because of the terrible Cargo bug @@ -75,7 +74,7 @@ rand_isaac = "0.2" # For matrix comparison macro matrixcompare = "0.2.0" -itertools = "0.9" +itertools = "0.10" [workspace] members = [ "nalgebra-lapack", "nalgebra-glm", "nalgebra-sparse" ] diff --git a/nalgebra-glm/Cargo.toml b/nalgebra-glm/Cargo.toml index 97e7f8b3..f3f1c886 100644 --- a/nalgebra-glm/Cargo.toml +++ b/nalgebra-glm/Cargo.toml @@ -19,7 +19,6 @@ maintenance = { status = "actively-developed" } [features] default = [ "std" ] std = [ "nalgebra/std", "simba/std" ] -stdweb = [ "nalgebra/stdweb" ] arbitrary = [ "nalgebra/arbitrary" ] serde-serialize = [ "nalgebra/serde-serialize" ] abomonation-serialize = [ "nalgebra/abomonation-serialize" ] @@ -27,5 +26,5 @@ abomonation-serialize = [ "nalgebra/abomonation-serialize" ] [dependencies] num-traits = { version = "0.2", default-features = false } approx = { version = "0.4", default-features = false } -simba = { version = "0.3", default-features = false } +simba = { version = "0.4", default-features = false } nalgebra = { path = "..", version = "0.24", default-features = false } diff --git a/nalgebra-lapack/Cargo.toml b/nalgebra-lapack/Cargo.toml index 58c92dd0..cefc6662 100644 --- a/nalgebra-lapack/Cargo.toml +++ b/nalgebra-lapack/Cargo.toml @@ -29,16 +29,16 @@ intel-mkl = ["lapack-src/intel-mkl"] [dependencies] nalgebra = { version = "0.24", path = ".." } num-traits = "0.2" -num-complex = { version = "0.2", default-features = false } -simba = "0.2" +num-complex = { version = "0.3", default-features = false } +simba = "0.4" serde = { version = "1.0", optional = true } serde_derive = { version = "1.0", optional = true } -lapack = { version = "0.16", default-features = false } -lapack-src = { version = "0.5", default-features = false } +lapack = { version = "0.17", default-features = false } +lapack-src = { version = "0.6", default-features = false } # clippy = "*" [dev-dependencies] nalgebra = { version = "0.24", features = [ "arbitrary" ], path = ".." } -quickcheck = "0.9" -approx = "0.3" -rand = "0.7" +quickcheck = "1" +approx = "0.4" +rand = "0.8" diff --git a/nalgebra-sparse/Cargo.toml b/nalgebra-sparse/Cargo.toml index bca07280..fed47f1b 100644 --- a/nalgebra-sparse/Cargo.toml +++ b/nalgebra-sparse/Cargo.toml @@ -14,11 +14,11 @@ slow-tests = [] [dependencies] nalgebra = { version="0.24", path = "../" } num-traits = { version = "0.2", default-features = false } -proptest = { version = "0.10", optional = true } +proptest = { version = "1.0", optional = true } matrixcompare-core = { version = "0.1.0", optional = true } [dev-dependencies] -itertools = "0.9" +itertools = "0.10" matrixcompare = { version = "0.2.0", features = [ "proptest-support" ] } nalgebra = { version="0.24", path = "../", features = ["compare"] } diff --git a/src/base/construction.rs b/src/base/construction.rs index e0464a02..ba15a0f0 100644 --- a/src/base/construction.rs +++ b/src/base/construction.rs @@ -824,8 +824,8 @@ where { #[inline] fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> MatrixMN { - let nrows = R::try_to_usize().unwrap_or_else(|| rng.gen_range(0, 10)); - let ncols = C::try_to_usize().unwrap_or_else(|| rng.gen_range(0, 10)); + let nrows = R::try_to_usize().unwrap_or_else(|| rng.gen_range(0..10)); + let ncols = C::try_to_usize().unwrap_or_else(|| rng.gen_range(0..10)); MatrixMN::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| rng.gen()) } @@ -841,9 +841,9 @@ where Owned: Clone + Send, { #[inline] - fn arbitrary(g: &mut G) -> Self { - let nrows = R::try_to_usize().unwrap_or(g.gen_range(0, 10)); - let ncols = C::try_to_usize().unwrap_or(g.gen_range(0, 10)); + fn arbitrary(g: &mut Gen) -> Self { + let nrows = R::try_to_usize().unwrap_or(usize::arbitrary(g) % 10); + let ncols = C::try_to_usize().unwrap_or(usize::arbitrary(g) % 10); Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| { N::arbitrary(g) diff --git a/src/base/helper.rs b/src/base/helper.rs index de601fb6..fe5ffd02 100644 --- a/src/base/helper.rs +++ b/src/base/helper.rs @@ -7,7 +7,7 @@ use rand::Rng; #[cfg(feature = "arbitrary")] #[doc(hidden)] #[inline] -pub fn reject bool, T: Arbitrary>(g: &mut G, f: F) -> T { +pub fn reject bool, T: Arbitrary>(g: &mut Gen, f: F) -> T { use std::iter; iter::repeat(()) .map(|_| Arbitrary::arbitrary(g)) diff --git a/src/debug/random_orthogonal.rs b/src/debug/random_orthogonal.rs index de72bdb7..fc740dc2 100644 --- a/src/debug/random_orthogonal.rs +++ b/src/debug/random_orthogonal.rs @@ -48,9 +48,8 @@ where DefaultAllocator: Allocator, Owned: Clone + Send, { - fn arbitrary(g: &mut G) -> Self { - use rand::Rng; - let dim = D::try_to_usize().unwrap_or(g.gen_range(1, 50)); + fn arbitrary(g: &mut Gen) -> Self { + let dim = D::try_to_usize().unwrap_or(1 + usize::arbitrary(g) % 50); Self::new(D::from_usize(dim), || N::arbitrary(g)) } } diff --git a/src/debug/random_sdp.rs b/src/debug/random_sdp.rs index b9f81859..fa2ef118 100644 --- a/src/debug/random_sdp.rs +++ b/src/debug/random_sdp.rs @@ -51,9 +51,8 @@ where DefaultAllocator: Allocator, Owned: Clone + Send, { - fn arbitrary(g: &mut G) -> Self { - use rand::Rng; - let dim = D::try_to_usize().unwrap_or(g.gen_range(1, 50)); + fn arbitrary(g: &mut Gen) -> Self { + let dim = D::try_to_usize().unwrap_or(1 + usize::arbitrary(g) % 50); Self::new(D::from_usize(dim), || N::arbitrary(g)) } } diff --git a/src/geometry/dual_quaternion_construction.rs b/src/geometry/dual_quaternion_construction.rs index b0ae8036..739972a9 100644 --- a/src/geometry/dual_quaternion_construction.rs +++ b/src/geometry/dual_quaternion_construction.rs @@ -108,7 +108,7 @@ where N::Element: SimdRealField, { #[inline] - fn arbitrary(rng: &mut G) -> Self { + fn arbitrary(rng: &mut Gen) -> Self { Self::from_real_and_dual(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng)) } } @@ -216,7 +216,7 @@ where N::Element: SimdRealField, { #[inline] - fn arbitrary(rng: &mut G) -> Self { + fn arbitrary(rng: &mut Gen) -> Self { Self::new_normalize(Arbitrary::arbitrary(rng)) } } diff --git a/src/geometry/isometry_construction.rs b/src/geometry/isometry_construction.rs index 0f487547..a64f8208 100644 --- a/src/geometry/isometry_construction.rs +++ b/src/geometry/isometry_construction.rs @@ -102,7 +102,7 @@ where DefaultAllocator: Allocator, { #[inline] - fn arbitrary(rng: &mut G) -> Self { + fn arbitrary(rng: &mut Gen) -> Self { Self::from_parts(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng)) } } diff --git a/src/geometry/orthographic.rs b/src/geometry/orthographic.rs index bd1e73c7..bf85a198 100644 --- a/src/geometry/orthographic.rs +++ b/src/geometry/orthographic.rs @@ -705,7 +705,7 @@ impl Arbitrary for Orthographic3 where Matrix4: Send, { - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { let left = Arbitrary::arbitrary(g); let right = helper::reject(g, |x: &N| *x > left); let bottom = Arbitrary::arbitrary(g); diff --git a/src/geometry/perspective.rs b/src/geometry/perspective.rs index bd8abac2..066ca57a 100644 --- a/src/geometry/perspective.rs +++ b/src/geometry/perspective.rs @@ -283,7 +283,7 @@ where #[cfg(feature = "arbitrary")] impl Arbitrary for Perspective3 { - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { let znear = Arbitrary::arbitrary(g); let zfar = helper::reject(g, |&x: &N| !(x - znear).is_zero()); let aspect = helper::reject(g, |&x: &N| !x.is_zero()); diff --git a/src/geometry/point_construction.rs b/src/geometry/point_construction.rs index c21680a9..e132304b 100644 --- a/src/geometry/point_construction.rs +++ b/src/geometry/point_construction.rs @@ -156,7 +156,7 @@ where >::Buffer: Send, { #[inline] - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { Self::from(VectorN::arbitrary(g)) } } diff --git a/src/geometry/quaternion_construction.rs b/src/geometry/quaternion_construction.rs index a26deb1a..ec46b68b 100644 --- a/src/geometry/quaternion_construction.rs +++ b/src/geometry/quaternion_construction.rs @@ -160,7 +160,7 @@ where Owned: Send, { #[inline] - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { Self::new( N::arbitrary(g), N::arbitrary(g), @@ -845,7 +845,7 @@ where Owned: Send, { #[inline] - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { let axisangle = Vector3::arbitrary(g); Self::from_scaled_axis(axisangle) } diff --git a/src/geometry/rotation_specialization.rs b/src/geometry/rotation_specialization.rs index fcaa8667..de87b40b 100644 --- a/src/geometry/rotation_specialization.rs +++ b/src/geometry/rotation_specialization.rs @@ -275,7 +275,7 @@ where Owned: Send, { #[inline] - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { Self::new(N::arbitrary(g)) } } @@ -961,7 +961,7 @@ where Owned: Send, { #[inline] - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { Self::new(VectorN::arbitrary(g)) } } diff --git a/src/geometry/similarity_construction.rs b/src/geometry/similarity_construction.rs index 510758cf..c228c5d0 100644 --- a/src/geometry/similarity_construction.rs +++ b/src/geometry/similarity_construction.rs @@ -114,7 +114,7 @@ where Owned: Send, { #[inline] - fn arbitrary(rng: &mut G) -> Self { + fn arbitrary(rng: &mut Gen) -> Self { let mut s: N = Arbitrary::arbitrary(rng); while s.is_zero() { s = Arbitrary::arbitrary(rng) diff --git a/src/geometry/translation_construction.rs b/src/geometry/translation_construction.rs index 9466816d..d9061ba0 100644 --- a/src/geometry/translation_construction.rs +++ b/src/geometry/translation_construction.rs @@ -61,13 +61,13 @@ where } #[cfg(feature = "arbitrary")] -impl Arbitrary for Translation +impl Arbitrary for Translation where DefaultAllocator: Allocator, Owned: Send, { #[inline] - fn arbitrary(rng: &mut G) -> Self { + fn arbitrary(rng: &mut Gen) -> Self { let v: VectorN = Arbitrary::arbitrary(rng); Self::from(v) } diff --git a/src/geometry/unit_complex_construction.rs b/src/geometry/unit_complex_construction.rs index acdbac8a..114fea6e 100644 --- a/src/geometry/unit_complex_construction.rs +++ b/src/geometry/unit_complex_construction.rs @@ -395,7 +395,7 @@ where N::Element: SimdRealField, { #[inline] - fn arbitrary(g: &mut G) -> Self { + fn arbitrary(g: &mut Gen) -> Self { UnitComplex::from_angle(N::arbitrary(g)) } } diff --git a/src/linalg/decomposition.rs b/src/linalg/decomposition.rs index e167861a..6428856b 100644 --- a/src/linalg/decomposition.rs +++ b/src/linalg/decomposition.rs @@ -154,7 +154,7 @@ impl> Matrix { /// /// The input matrix `self` is assumed to be symmetric and this decomposition will only read /// the upper-triangular part of `self`. - pub fn udu(self) -> UDU + pub fn udu(self) -> Option> where N: RealField, DefaultAllocator: Allocator + Allocator, diff --git a/src/linalg/udu.rs b/src/linalg/udu.rs index 346753b2..70ff84a7 100644 --- a/src/linalg/udu.rs +++ b/src/linalg/udu.rs @@ -48,7 +48,7 @@ where /// the upper-triangular part of `p`. /// /// Ref.: "Optimal control and estimation-Dover Publications", Robert F. Stengel, (1994) page 360 - pub fn new(p: MatrixN) -> Self { + pub fn new(p: MatrixN) -> Option { let n = p.ncols(); let n_dim = p.data.shape().1; @@ -56,6 +56,11 @@ where let mut u = MatrixN::zeros_generic(n_dim, n_dim); d[n - 1] = p[(n - 1, n - 1)]; + + if d[n - 1].is_zero() { + return None; + } + u.column_mut(n - 1) .axpy(N::one() / d[n - 1], &p.column(n - 1), N::zero()); @@ -67,6 +72,10 @@ where d[j] = p[(j, j)] - d_j; + if d[j].is_zero() { + return None; + } + for i in (0..=j).rev() { let mut u_ij = u[(i, j)]; for k in j + 1..n { @@ -79,7 +88,7 @@ where u[(j, j)] = N::one(); } - Self { u, d } + Some(Self { u, d }) } /// Returns the diagonal elements as a matrix diff --git a/src/proptest/mod.rs b/src/proptest/mod.rs index 0ac2a377..ae263956 100644 --- a/src/proptest/mod.rs +++ b/src/proptest/mod.rs @@ -408,7 +408,7 @@ where } /// A strategy for generating matrices. -#[derive(Debug)] +#[derive(Debug, Clone)] pub struct MatrixStrategy where NStrategy: Strategy, diff --git a/tests/core/blas.rs b/tests/core/blas.rs index 9b7be4af..ef5c1c2f 100644 --- a/tests/core/blas.rs +++ b/tests/core/blas.rs @@ -21,19 +21,20 @@ fn gemm_noncommutative() { assert_eq!(res, Matrix2::zero()); } -#[cfg(feature = "arbitrary")] -mod blas_quickcheck { +#[cfg(feature = "proptest-support")] +mod blas_proptest { + use crate::proptest::{PROPTEST_F64, PROPTEST_MATRIX_DIM}; use na::{DMatrix, DVector}; - use std::cmp; + use proptest::{prop_assert, proptest}; - quickcheck! { + proptest! { /* * * Symmetric operators. * */ - fn gemv_symm(n: usize, alpha: f64, beta: f64) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); + #[test] + fn gemv_symm(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let a = DMatrix::::new_random(n, n); let a = &a * a.transpose(); @@ -44,18 +45,16 @@ mod blas_quickcheck { y1.gemv(alpha, &a, &x, beta); y2.sygemv(alpha, &a.lower_triangle(), &x, beta); - if !relative_eq!(y1, y2, epsilon = 1.0e-10) { - return false; - } + prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)); y1.gemv(alpha, &a, &x, 0.0); y2.sygemv(alpha, &a.lower_triangle(), &x, 0.0); - relative_eq!(y1, y2, epsilon = 1.0e-10) + prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)) } - fn gemv_tr(n: usize, alpha: f64, beta: f64) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); + #[test] + fn gemv_tr(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let a = DMatrix::::new_random(n, n); let x = DVector::new_random(n); let mut y1 = DVector::new_random(n); @@ -64,18 +63,16 @@ mod blas_quickcheck { y1.gemv(alpha, &a, &x, beta); y2.gemv_tr(alpha, &a.transpose(), &x, beta); - if !relative_eq!(y1, y2, epsilon = 1.0e-10) { - return false; - } + prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)); y1.gemv(alpha, &a, &x, 0.0); y2.gemv_tr(alpha, &a.transpose(), &x, 0.0); - relative_eq!(y1, y2, epsilon = 1.0e-10) + prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10)) } - fn ger_symm(n: usize, alpha: f64, beta: f64) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); + #[test] + fn ger_symm(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let a = DMatrix::::new_random(n, n); let mut a1 = &a * a.transpose(); let mut a2 = a1.lower_triangle(); @@ -86,18 +83,16 @@ mod blas_quickcheck { a1.ger(alpha, &x, &y, beta); a2.syger(alpha, &x, &y, beta); - if !relative_eq!(a1.lower_triangle(), a2) { - return false; - } + prop_assert!(relative_eq!(a1.lower_triangle(), a2)); a1.ger(alpha, &x, &y, 0.0); a2.syger(alpha, &x, &y, 0.0); - relative_eq!(a1.lower_triangle(), a2) + prop_assert!(relative_eq!(a1.lower_triangle(), a2)) } - fn quadform(n: usize, alpha: f64, beta: f64) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); + #[test] + fn quadform(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let rhs = DMatrix::::new_random(6, n); let mid = DMatrix::::new_random(6, 6); let mut res = DMatrix::new_random(n, n); @@ -106,13 +101,11 @@ mod blas_quickcheck { res.quadform(alpha, &mid, &rhs, beta); - println!("{}{}", res, expected); - - relative_eq!(res, expected, epsilon = 1.0e-7) + prop_assert!(relative_eq!(res, expected, epsilon = 1.0e-7)) } - fn quadform_tr(n: usize, alpha: f64, beta: f64) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); + #[test] + fn quadform_tr(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) { let lhs = DMatrix::::new_random(6, n); let mid = DMatrix::::new_random(n, n); let mut res = DMatrix::new_random(6, 6); @@ -121,9 +114,7 @@ mod blas_quickcheck { res.quadform_tr(alpha, &lhs, &mid , beta); - println!("{}{}", res, expected); - - relative_eq!(res, expected, epsilon = 1.0e-7) + prop_assert!(relative_eq!(res, expected, epsilon = 1.0e-7)) } } } diff --git a/tests/core/conversion.rs b/tests/core/conversion.rs index b7a8c5f8..93545004 100644 --- a/tests/core/conversion.rs +++ b/tests/core/conversion.rs @@ -1,44 +1,49 @@ -#![cfg(all(feature = "arbitrary", feature = "alga"))] +#![cfg(all(feature = "proptest-support", feature = "alga"))] use alga::linear::Transformation; use na::{ self, Affine3, Isometry3, Matrix2, Matrix2x3, Matrix2x4, Matrix2x5, Matrix2x6, Matrix3, Matrix3x2, Matrix3x4, Matrix3x5, Matrix3x6, Matrix4, Matrix4x2, Matrix4x3, Matrix4x5, Matrix4x6, Matrix5, Matrix5x2, Matrix5x3, Matrix5x4, Matrix5x6, Matrix6, Matrix6x2, Matrix6x3, - Matrix6x4, Matrix6x5, Point3, Projective3, Rotation3, RowVector1, RowVector2, RowVector3, - RowVector4, RowVector5, RowVector6, Similarity3, Transform3, Translation3, UnitQuaternion, - Vector1, Vector2, Vector3, Vector4, Vector5, Vector6, + Matrix6x4, Matrix6x5, Projective3, Rotation3, RowVector1, RowVector2, RowVector3, RowVector4, + RowVector5, RowVector6, Similarity3, Transform3, UnitQuaternion, Vector1, Vector2, Vector3, + Vector4, Vector5, Vector6, }; use na::{DMatrix, DMatrixSlice, DMatrixSliceMut, MatrixSlice, MatrixSliceMut}; use na::{U1, U3, U4}; -quickcheck! { - fn translation_conversion(t: Translation3, v: Vector3, p: Point3) -> bool { +use crate::proptest::*; +use proptest::{prop_assert, prop_assert_eq, proptest}; + +proptest! { + #[test] + fn translation_conversion(t in translation3(), v in vector3(), p in point3()) { let iso: Isometry3 = na::convert(t); let sim: Similarity3 = na::convert(t); let aff: Affine3 = na::convert(t); let prj: Projective3 = na::convert(t); let tr: Transform3 = na::convert(t); - t == na::try_convert(iso).unwrap() && - t == na::try_convert(sim).unwrap() && - t == na::try_convert(aff).unwrap() && - t == na::try_convert(prj).unwrap() && - t == na::try_convert(tr).unwrap() && + prop_assert_eq!(t, na::try_convert(iso).unwrap()); + prop_assert_eq!(t, na::try_convert(sim).unwrap()); + prop_assert_eq!(t, na::try_convert(aff).unwrap()); + prop_assert_eq!(t, na::try_convert(prj).unwrap()); + prop_assert_eq!(t, na::try_convert(tr).unwrap() ); - t.transform_vector(&v) == iso * v && - t.transform_vector(&v) == sim * v && - t.transform_vector(&v) == aff * v && - t.transform_vector(&v) == prj * v && - t.transform_vector(&v) == tr * v && + prop_assert_eq!(t.transform_vector(&v), iso * v); + prop_assert_eq!(t.transform_vector(&v), sim * v); + prop_assert_eq!(t.transform_vector(&v), aff * v); + prop_assert_eq!(t.transform_vector(&v), prj * v); + prop_assert_eq!(t.transform_vector(&v), tr * v); - t * p == iso * p && - t * p == sim * p && - t * p == aff * p && - t * p == prj * p && - t * p == tr * p + prop_assert_eq!(t * p, iso * p); + prop_assert_eq!(t * p, sim * p); + prop_assert_eq!(t * p, aff * p); + prop_assert_eq!(t * p, prj * p); + prop_assert_eq!(t * p, tr * p); } - fn rotation_conversion(r: Rotation3, v: Vector3, p: Point3) -> bool { + #[test] + fn rotation_conversion(r in rotation3(), v in vector3(), p in point3()) { let uq: UnitQuaternion = na::convert(r); let iso: Isometry3 = na::convert(r); let sim: Similarity3 = na::convert(r); @@ -46,30 +51,31 @@ quickcheck! { let prj: Projective3 = na::convert(r); let tr: Transform3 = na::convert(r); - relative_eq!(r, na::try_convert(uq).unwrap(), epsilon = 1.0e-7) && - relative_eq!(r, na::try_convert(iso).unwrap(), epsilon = 1.0e-7) && - relative_eq!(r, na::try_convert(sim).unwrap(), epsilon = 1.0e-7) && - r == na::try_convert(aff).unwrap() && - r == na::try_convert(prj).unwrap() && - r == na::try_convert(tr).unwrap() && + prop_assert!(relative_eq!(r, na::try_convert(uq).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(r, na::try_convert(iso).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(r, na::try_convert(sim).unwrap(), epsilon = 1.0e-7)); + prop_assert_eq!(r, na::try_convert(aff).unwrap()); + prop_assert_eq!(r, na::try_convert(prj).unwrap()); + prop_assert_eq!(r, na::try_convert(tr).unwrap() ); // NOTE: we need relative_eq because Isometry and Similarity use quaternions. - relative_eq!(r * v, uq * v, epsilon = 1.0e-7) && - relative_eq!(r * v, iso * v, epsilon = 1.0e-7) && - relative_eq!(r * v, sim * v, epsilon = 1.0e-7) && - r * v == aff * v && - r * v == prj * v && - r * v == tr * v && + prop_assert!(relative_eq!(r * v, uq * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(r * v, iso * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(r * v, sim * v, epsilon = 1.0e-7)); + prop_assert_eq!(r * v, aff * v); + prop_assert_eq!(r * v, prj * v); + prop_assert_eq!(r * v, tr * v); - relative_eq!(r * p, uq * p, epsilon = 1.0e-7) && - relative_eq!(r * p, iso * p, epsilon = 1.0e-7) && - relative_eq!(r * p, sim * p, epsilon = 1.0e-7) && - r * p == aff * p && - r * p == prj * p && - r * p == tr * p + prop_assert!(relative_eq!(r * p, uq * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(r * p, iso * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(r * p, sim * p, epsilon = 1.0e-7)); + prop_assert_eq!(r * p, aff * p); + prop_assert_eq!(r * p, prj * p); + prop_assert_eq!(r * p, tr * p); } - fn unit_quaternion_conversion(uq: UnitQuaternion, v: Vector3, p: Point3) -> bool { + #[test] + fn unit_quaternion_conversion(uq in unit_quaternion(), v in vector3(), p in point3()) { let rot: Rotation3 = na::convert(uq); let iso: Isometry3 = na::convert(uq); let sim: Similarity3 = na::convert(uq); @@ -77,68 +83,70 @@ quickcheck! { let prj: Projective3 = na::convert(uq); let tr: Transform3 = na::convert(uq); - uq == na::try_convert(iso).unwrap() && - uq == na::try_convert(sim).unwrap() && - relative_eq!(uq, na::try_convert(rot).unwrap(), epsilon = 1.0e-7) && - relative_eq!(uq, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) && - relative_eq!(uq, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) && - relative_eq!(uq, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) && + prop_assert_eq!(uq, na::try_convert(iso).unwrap()); + prop_assert_eq!(uq, na::try_convert(sim).unwrap()); + prop_assert!(relative_eq!(uq, na::try_convert(rot).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(uq, na::try_convert(aff).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(uq, na::try_convert(prj).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(uq, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) ); // NOTE: iso and sim use unit quaternions for the rotation so conversions to them are exact. - relative_eq!(uq * v, rot * v, epsilon = 1.0e-7) && - uq * v == iso * v && - uq * v == sim * v && - relative_eq!(uq * v, aff * v, epsilon = 1.0e-7) && - relative_eq!(uq * v, prj * v, epsilon = 1.0e-7) && - relative_eq!(uq * v, tr * v, epsilon = 1.0e-7) && + prop_assert!(relative_eq!(uq * v, rot * v, epsilon = 1.0e-7)); + prop_assert_eq!(uq * v, iso * v); + prop_assert_eq!(uq * v, sim * v); + prop_assert!(relative_eq!(uq * v, aff * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(uq * v, prj * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(uq * v, tr * v, epsilon = 1.0e-7)); - relative_eq!(uq * p, rot * p, epsilon = 1.0e-7) && - uq * p == iso * p && - uq * p == sim * p && - relative_eq!(uq * p, aff * p, epsilon = 1.0e-7) && - relative_eq!(uq * p, prj * p, epsilon = 1.0e-7) && - relative_eq!(uq * p, tr * p, epsilon = 1.0e-7) + prop_assert!(relative_eq!(uq * p, rot * p, epsilon = 1.0e-7)); + prop_assert_eq!(uq * p, iso * p); + prop_assert_eq!(uq * p, sim * p); + prop_assert!(relative_eq!(uq * p, aff * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(uq * p, prj * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(uq * p, tr * p, epsilon = 1.0e-7)); } - fn isometry_conversion(iso: Isometry3, v: Vector3, p: Point3) -> bool { + #[test] + fn isometry_conversion(iso in isometry3(), v in vector3(), p in point3()) { let sim: Similarity3 = na::convert(iso); let aff: Affine3 = na::convert(iso); let prj: Projective3 = na::convert(iso); let tr: Transform3 = na::convert(iso); - iso == na::try_convert(sim).unwrap() && - relative_eq!(iso, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) && - relative_eq!(iso, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) && - relative_eq!(iso, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) && + prop_assert_eq!(iso, na::try_convert(sim).unwrap()); + prop_assert!(relative_eq!(iso, na::try_convert(aff).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(iso, na::try_convert(prj).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(iso, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) ); - iso * v == sim * v && - relative_eq!(iso * v, aff * v, epsilon = 1.0e-7) && - relative_eq!(iso * v, prj * v, epsilon = 1.0e-7) && - relative_eq!(iso * v, tr * v, epsilon = 1.0e-7) && + prop_assert_eq!(iso * v, sim * v); + prop_assert!(relative_eq!(iso * v, aff * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(iso * v, prj * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(iso * v, tr * v, epsilon = 1.0e-7)); - iso * p == sim * p && - relative_eq!(iso * p, aff * p, epsilon = 1.0e-7) && - relative_eq!(iso * p, prj * p, epsilon = 1.0e-7) && - relative_eq!(iso * p, tr * p, epsilon = 1.0e-7) + prop_assert_eq!(iso * p, sim * p); + prop_assert!(relative_eq!(iso * p, aff * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(iso * p, prj * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(iso * p, tr * p, epsilon = 1.0e-7)); } - fn similarity_conversion(sim: Similarity3, v: Vector3, p: Point3) -> bool { + #[test] + fn similarity_conversion(sim in similarity3(), v in vector3(), p in point3()) { let aff: Affine3 = na::convert(sim); let prj: Projective3 = na::convert(sim); let tr: Transform3 = na::convert(sim); - relative_eq!(sim, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) && - relative_eq!(sim, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) && - relative_eq!(sim, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) && + prop_assert!(relative_eq!(sim, na::try_convert(aff).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(sim, na::try_convert(prj).unwrap(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(sim, na::try_convert(tr).unwrap(), epsilon = 1.0e-7)); - relative_eq!(sim * v, aff * v, epsilon = 1.0e-7) && - relative_eq!(sim * v, prj * v, epsilon = 1.0e-7) && - relative_eq!(sim * v, tr * v, epsilon = 1.0e-7) && + prop_assert!(relative_eq!(sim * v, aff * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(sim * v, prj * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(sim * v, tr * v, epsilon = 1.0e-7)); - relative_eq!(sim * p, aff * p, epsilon = 1.0e-7) && - relative_eq!(sim * p, prj * p, epsilon = 1.0e-7) && - relative_eq!(sim * p, tr * p, epsilon = 1.0e-7) + prop_assert!(relative_eq!(sim * p, aff * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(sim * p, prj * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(sim * p, tr * p, epsilon = 1.0e-7)); } // XXX test Transform diff --git a/tests/core/helper.rs b/tests/core/helper.rs index 42938580..ef749da6 100644 --- a/tests/core/helper.rs +++ b/tests/core/helper.rs @@ -12,7 +12,7 @@ pub struct RandComplex(pub Complex); impl Arbitrary for RandComplex { #[inline] - fn arbitrary(rng: &mut G) -> Self { + fn arbitrary(rng: &mut Gen) -> Self { let im = Arbitrary::arbitrary(rng); let re = Arbitrary::arbitrary(rng); RandComplex(Complex::new(re, im)) @@ -38,7 +38,7 @@ pub struct RandScalar(pub N); impl Arbitrary for RandScalar { #[inline] - fn arbitrary(rng: &mut G) -> Self { + fn arbitrary(rng: &mut Gen) -> Self { RandScalar(Arbitrary::arbitrary(rng)) } } diff --git a/tests/core/matrix.rs b/tests/core/matrix.rs index 14eaeacd..daa8b72f 100644 --- a/tests/core/matrix.rs +++ b/tests/core/matrix.rs @@ -829,151 +829,145 @@ fn swizzle() { assert_eq!(c.zyz(), Vector3::new(3.0, 2.0, 3.0)); } -#[cfg(feature = "arbitrary")] +#[cfg(feature = "proptest-support")] mod transposition_tests { use super::*; - use na::Matrix4x6; + use crate::proptest::{dmatrix, matrix, vector4, PROPTEST_F64}; + use na::{U2, U3, U4, U6}; + use proptest::{prop_assert, prop_assert_eq, proptest}; - quickcheck! { - fn transpose_transpose_is_self(m: Matrix2x3) -> bool { - m.transpose().transpose() == m + proptest! { + #[test] + fn transpose_transpose_is_self(m in matrix(PROPTEST_F64, U2, U3)) { + prop_assert_eq!(m.transpose().transpose(), m) } - fn transpose_mut_transpose_mut_is_self(m: Matrix3) -> bool { + #[test] + fn transpose_mut_transpose_mut_is_self(m in matrix(PROPTEST_F64, U3, U3)) { let mut mm = m; mm.transpose_mut(); mm.transpose_mut(); - m == mm + prop_assert_eq!(m, mm) } - fn transpose_transpose_is_id_dyn(m: DMatrix) -> bool { - m.transpose().transpose() == m + #[test] + fn transpose_transpose_is_id_dyn(m in dmatrix()) { + prop_assert_eq!(m.transpose().transpose(), m) } - fn check_transpose_components_dyn(m: DMatrix) -> bool { + #[test] + fn check_transpose_components_dyn(m in dmatrix()) { let tr = m.transpose(); let (nrows, ncols) = m.shape(); - if nrows != tr.shape().1 || ncols != tr.shape().0 { - return false - } + prop_assert!(nrows == tr.shape().1 && ncols == tr.shape().0); for i in 0 .. nrows { for j in 0 .. ncols { - if m[(i, j)] != tr[(j, i)] { - return false - } + prop_assert_eq!(m[(i, j)], tr[(j, i)]); } } - - true } - fn tr_mul_is_transpose_then_mul(m: Matrix4x6, v: Vector4) -> bool { - relative_eq!(m.transpose() * v, m.tr_mul(&v), epsilon = 1.0e-7) + #[test] + fn tr_mul_is_transpose_then_mul(m in matrix(PROPTEST_F64, U4, U6), v in vector4()) { + prop_assert!(relative_eq!(m.transpose() * v, m.tr_mul(&v), epsilon = 1.0e-7)) } } } -#[cfg(feature = "arbitrary")] +#[cfg(feature = "proptest-support")] mod inversion_tests { use super::*; + use crate::proptest::*; use na::Matrix1; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn self_mul_inv_is_id_dim1(m: Matrix1) -> bool { + proptest! { + #[test] + fn self_mul_inv_is_id_dim1(m in matrix1()) { if let Some(im) = m.try_inverse() { let id = Matrix1::one(); - relative_eq!(im * m, id, epsilon = 1.0e-7) && - relative_eq!(m * im, id, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(im * m, id, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(m * im, id, epsilon = 1.0e-7)); } } - fn self_mul_inv_is_id_dim2(m: Matrix2) -> bool { + #[test] + fn self_mul_inv_is_id_dim2(m in matrix2()) { if let Some(im) = m.try_inverse() { let id = Matrix2::one(); - relative_eq!(im * m, id, epsilon = 1.0e-7) && - relative_eq!(m * im, id, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(im * m, id, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(m * im, id, epsilon = 1.0e-7)); } } - fn self_mul_inv_is_id_dim3(m: Matrix3) -> bool { + #[test] + fn self_mul_inv_is_id_dim3(m in matrix3()) { if let Some(im) = m.try_inverse() { let id = Matrix3::one(); - relative_eq!(im * m, id, epsilon = 1.0e-7) && - relative_eq!(m * im, id, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(im * m, id, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(m * im, id, epsilon = 1.0e-7)); } } - fn self_mul_inv_is_id_dim4(m: Matrix4) -> bool { + #[test] + fn self_mul_inv_is_id_dim4(m in matrix4()) { if let Some(im) = m.try_inverse() { let id = Matrix4::one(); - relative_eq!(im * m, id, epsilon = 1.0e-7) && - relative_eq!(m * im, id, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(im * m, id, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(m * im, id, epsilon = 1.0e-7)); } } - fn self_mul_inv_is_id_dim6(m: Matrix6) -> bool { + #[test] + fn self_mul_inv_is_id_dim6(m in matrix6()) { if let Some(im) = m.try_inverse() { let id = Matrix6::one(); - relative_eq!(im * m, id, epsilon = 1.0e-7) && - relative_eq!(m * im, id, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(im * m, id, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(m * im, id, epsilon = 1.0e-7)); } } } } -#[cfg(feature = "arbitrary")] +#[cfg(feature = "proptest-support")] mod normalization_tests { - use super::*; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn normalized_vec_norm_is_one(v: Vector3) -> bool { + proptest! { + #[test] + fn normalized_vec_norm_is_one(v in vector3()) { if let Some(nv) = v.try_normalize(1.0e-10) { - relative_eq!(nv.norm(), 1.0, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(nv.norm(), 1.0, epsilon = 1.0e-7)); } } - fn normalized_vec_norm_is_one_dyn(v: DVector) -> bool { + #[test] + fn normalized_vec_norm_is_one_dyn(v in dvector()) { if let Some(nv) = v.try_normalize(1.0e-10) { - relative_eq!(nv.norm(), 1.0, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(nv.norm(), 1.0, epsilon = 1.0e-7)); } } } } -#[cfg(all(feature = "arbitrary", feature = "alga"))] -// TODO: move this to alga ? +#[cfg(all(feature = "proptest-support", feature = "alga"))] +// TODO: move this to alga ? mod finite_dim_inner_space_tests { use super::*; + use crate::proptest::*; use alga::linear::FiniteDimInnerSpace; + use proptest::collection::vec; + use proptest::{prop_assert, proptest}; use std::fmt::Display; macro_rules! finite_dim_inner_space_test( - ($($Vector: ident, $orthonormal_subspace: ident, $orthonormalization: ident);* $(;)*) => {$( - quickcheck!{ - fn $orthonormal_subspace(vs: Vec<$Vector>) -> bool { + ($($Vector: ident, $vstrategy: ident, $orthonormal_subspace: ident, $orthonormalization: ident);* $(;)*) => {$( + proptest! { + #[test] + fn $orthonormal_subspace(vs in vec($vstrategy(), 0..10)) { let mut given_basis = vs.clone(); let given_basis_dim = $Vector::orthonormalize(&mut given_basis[..]); let mut ortho_basis = Vec::new(); @@ -982,29 +976,21 @@ mod finite_dim_inner_space_tests { |e| { ortho_basis.push(*e); true } ); - if !is_subspace_basis(&ortho_basis[..]) { - return false; - } + prop_assert!(is_subspace_basis(&ortho_basis[..])); for v in vs { for b in &ortho_basis { - if !relative_eq!(v.dot(b), 0.0, epsilon = 1.0e-7) { - println!("Found dot product: {} · {} = {}", v, b, v.dot(b)); - return false; - } + prop_assert!(relative_eq!(v.dot(b), 0.0, epsilon = 1.0e-7)); } } - - true } - fn $orthonormalization(vs: Vec<$Vector>) -> bool { + #[test] + fn $orthonormalization(vs in vec($vstrategy(), 0..10)) { let mut basis = vs.clone(); let subdim = $Vector::orthonormalize(&mut basis[..]); - if !is_subspace_basis(&basis[.. subdim]) { - return false; - } + prop_assert!(is_subspace_basis(&basis[.. subdim])); for mut e in vs { for b in &basis[.. subdim] { @@ -1012,26 +998,20 @@ mod finite_dim_inner_space_tests { } // Any element of `e` must be a linear combination of the basis elements. - if !relative_eq!(e.norm(), 0.0, epsilon = 1.0e-7) { - println!("Orthonormalization; element decomposition failure: {}", e); - println!("... the non-zero norm is: {}", e.norm()); - return false; - } + prop_assert!(relative_eq!(e.norm(), 0.0, epsilon = 1.0e-7)); } - - true } } )*} ); finite_dim_inner_space_test!( - Vector1, orthonormal_subspace_basis1, orthonormalize1; - Vector2, orthonormal_subspace_basis2, orthonormalize2; - Vector3, orthonormal_subspace_basis3, orthonormalize3; - Vector4, orthonormal_subspace_basis4, orthonormalize4; - Vector5, orthonormal_subspace_basis5, orthonormalize5; - Vector6, orthonormal_subspace_basis6, orthonormalize6; + Vector1, vector1, orthonormal_subspace_basis1, orthonormalize1; + Vector2, vector2, orthonormal_subspace_basis2, orthonormalize2; + Vector3, vector3, orthonormal_subspace_basis3, orthonormalize3; + Vector4, vector4, orthonormal_subspace_basis4, orthonormalize4; + Vector5, vector5, orthonormal_subspace_basis5, orthonormalize5; + Vector6, vector6, orthonormal_subspace_basis6, orthonormalize6; ); /* @@ -1039,7 +1019,6 @@ mod finite_dim_inner_space_tests { * Helper functions. * */ - #[cfg(feature = "arbitrary")] fn is_subspace_basis + Display>( vs: &[T], ) -> bool { diff --git a/tests/core/matrixcompare.rs b/tests/core/matrixcompare.rs index cdd93ea3..ab3ecc2c 100644 --- a/tests/core/matrixcompare.rs +++ b/tests/core/matrixcompare.rs @@ -4,34 +4,32 @@ //! The tests here only check that the necessary trait implementations are correctly implemented, //! in addition to some sanity checks with example input. +use matrixcompare::assert_matrix_eq; use nalgebra::{MatrixMN, U4, U5}; -#[cfg(feature = "arbitrary")] -use nalgebra::DMatrix; +#[cfg(feature = "proptest-support")] +use { + crate::proptest::*, + matrixcompare::DenseAccess, + nalgebra::DMatrix, + proptest::{prop_assert_eq, proptest}, +}; -use matrixcompare::assert_matrix_eq; - -#[cfg(feature = "arbitrary")] -use matrixcompare::DenseAccess; - -#[cfg(feature = "arbitrary")] -quickcheck! { - fn fetch_single_is_equivalent_to_index_f64(matrix: DMatrix) -> bool { +#[cfg(feature = "proptest-support")] +proptest! { + #[test] + fn fetch_single_is_equivalent_to_index_f64(matrix in dmatrix()) { for i in 0 .. matrix.nrows() { for j in 0 .. matrix.ncols() { - if matrix.fetch_single(i, j) != *matrix.index((i, j)) { - return false; - } + prop_assert_eq!(matrix.fetch_single(i, j), *matrix.index((i, j))); } } - - true } - fn matrixcompare_shape_agrees_with_matrix(matrix: DMatrix) -> bool { - matrix.nrows() == as matrixcompare::Matrix>::rows(&matrix) - && - matrix.ncols() == as matrixcompare::Matrix>::cols(&matrix) + #[test] + fn matrixcompare_shape_agrees_with_matrix(matrix in dmatrix()) { + prop_assert_eq!(matrix.nrows(), as matrixcompare::Matrix>::rows(&matrix)); + prop_assert_eq!(matrix.ncols(), as matrixcompare::Matrix>::cols(&matrix)); } } diff --git a/tests/geometry/dual_quaternion.rs b/tests/geometry/dual_quaternion.rs index 2884f7f4..6cc975a5 100644 --- a/tests/geometry/dual_quaternion.rs +++ b/tests/geometry/dual_quaternion.rs @@ -1,36 +1,40 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] #![allow(non_snake_case)] -use na::{ - DualQuaternion, Isometry3, Point3, Translation3, UnitDualQuaternion, UnitQuaternion, Vector3, -}; +use na::{DualQuaternion, Point3, UnitDualQuaternion, Vector3}; -quickcheck!( - fn isometry_equivalence(iso: Isometry3, p: Point3, v: Vector3) -> bool { +use crate::proptest::*; +use proptest::{prop_assert, proptest}; + +proptest!( + #[test] + fn isometry_equivalence(iso in isometry3(), p in point3(), v in vector3()) { let dq = UnitDualQuaternion::from_isometry(&iso); - relative_eq!(iso * p, dq * p, epsilon = 1.0e-7) - && relative_eq!(iso * v, dq * v, epsilon = 1.0e-7) + prop_assert!(relative_eq!(iso * p, dq * p, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(iso * v, dq * v, epsilon = 1.0e-7)); } - fn inverse_is_identity(i: UnitDualQuaternion, p: Point3, v: Vector3) -> bool { + #[test] + fn inverse_is_identity(i in unit_dual_quaternion(), p in point3(), v in vector3()) { let ii = i.inverse(); - relative_eq!(i * ii, UnitDualQuaternion::identity(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(i * ii, UnitDualQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!(ii * i, UnitDualQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) && relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) && relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) - && relative_eq!((ii * i) * v, v, epsilon = 1.0e-7) + && relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)); } #[cfg_attr(rustfmt, rustfmt_skip)] + #[test] fn multiply_equals_alga_transform( - dq: UnitDualQuaternion, - v: Vector3, - p: Point3 - ) -> bool { - dq * v == dq.transform_vector(&v) + dq in unit_dual_quaternion(), + v in vector3(), + p in point3() + ) { + prop_assert!(dq * v == dq.transform_vector(&v) && dq * p == dq.transform_point(&p) && relative_eq!( dq.inverse() * v, @@ -41,44 +45,46 @@ quickcheck!( dq.inverse() * p, dq.inverse_transform_point(&p), epsilon = 1.0e-7 - ) + )); } #[cfg_attr(rustfmt, rustfmt_skip)] + #[test] fn composition( - dq: UnitDualQuaternion, - uq: UnitQuaternion, - t: Translation3, - v: Vector3, - p: Point3 - ) -> bool { + dq in unit_dual_quaternion(), + uq in unit_quaternion(), + t in translation3(), + v in vector3(), + p in point3() + ) { // (rotation × dual quaternion) * point = rotation × (dual quaternion * point) - relative_eq!((uq * dq) * v, uq * (dq * v), epsilon = 1.0e-7) && - relative_eq!((uq * dq) * p, uq * (dq * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((uq * dq) * v, uq * (dq * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uq * dq) * p, uq * (dq * p), epsilon = 1.0e-7)); // (dual quaternion × rotation) * point = dual quaternion × (rotation * point) - relative_eq!((dq * uq) * v, dq * (uq * v), epsilon = 1.0e-7) && - relative_eq!((dq * uq) * p, dq * (uq * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((dq * uq) * v, dq * (uq * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((dq * uq) * p, dq * (uq * p), epsilon = 1.0e-7)); // (translation × dual quaternion) * point = translation × (dual quaternion * point) - relative_eq!((t * dq) * v, (dq * v), epsilon = 1.0e-7) && - relative_eq!((t * dq) * p, t * (dq * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((t * dq) * v, (dq * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((t * dq) * p, t * (dq * p), epsilon = 1.0e-7)); // (dual quaternion × translation) * point = dual quaternion × (translation * point) - relative_eq!((dq * t) * v, dq * v, epsilon = 1.0e-7) && - relative_eq!((dq * t) * p, dq * (t * p), epsilon = 1.0e-7) + prop_assert!(relative_eq!((dq * t) * v, dq * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!((dq * t) * p, dq * (t * p), epsilon = 1.0e-7)); } #[cfg_attr(rustfmt, rustfmt_skip)] + #[test] fn all_op_exist( - dq: DualQuaternion, - udq: UnitDualQuaternion, - uq: UnitQuaternion, - s: f64, - t: Translation3, - v: Vector3, - p: Point3 - ) -> bool { + dq in dual_quaternion(), + udq in unit_dual_quaternion(), + uq in unit_quaternion(), + s in PROPTEST_F64, + t in translation3(), + v in vector3(), + p in point3() + ) { let dqMs: DualQuaternion<_> = dq * s; let dqMdq: DualQuaternion<_> = dq * dq; @@ -145,7 +151,7 @@ quickcheck!( iDuq1 /= uq; iDuq2 /= &uq; - dqMs == dqMs1 + prop_assert!(dqMs == dqMs1 && dqMdq == dqMdq1 && dqMdq == dqMdq2 && dqMudq == dqMudq1 @@ -199,6 +205,6 @@ quickcheck!( && uqMi == &uq * udq && uqDi == &uq / &udq && uqDi == uq / &udq - && uqDi == &uq / udq + && uqDi == &uq / udq) } ); diff --git a/tests/geometry/isometry.rs b/tests/geometry/isometry.rs index 6d48c6bf..cfacaffd 100644 --- a/tests/geometry/isometry.rs +++ b/tests/geometry/isometry.rs @@ -1,67 +1,74 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] #![allow(non_snake_case)] -use na::{ - Isometry2, Isometry3, Point2, Point3, Rotation2, Rotation3, Translation2, Translation3, - UnitComplex, UnitQuaternion, Vector2, Vector3, -}; +use na::{Isometry3, Point3, Vector3}; -quickcheck!( - fn append_rotation_wrt_point_to_id(r: UnitQuaternion, p: Point3) -> bool { +use crate::proptest::*; +use proptest::{prop_assert, prop_assert_eq, proptest}; + +proptest!( + #[test] + fn append_rotation_wrt_point_to_id(r in unit_quaternion(), p in point3()) { let mut iso = Isometry3::identity(); iso.append_rotation_wrt_point_mut(&r, &p); - iso == Isometry3::rotation_wrt_point(r, p) + prop_assert_eq!(iso, Isometry3::rotation_wrt_point(r, p)) } - fn rotation_wrt_point_invariance(r: UnitQuaternion, p: Point3) -> bool { + #[test] + fn rotation_wrt_point_invariance(r in unit_quaternion(), p in point3()) { let iso = Isometry3::rotation_wrt_point(r, p); - relative_eq!(iso * p, p, epsilon = 1.0e-7) + prop_assert!(relative_eq!(iso * p, p, epsilon = 1.0e-7)) } - fn look_at_rh_3(eye: Point3, target: Point3, up: Vector3) -> bool { + #[test] + fn look_at_rh_3(eye in point3(), target in point3(), up in vector3()) { let viewmatrix = Isometry3::look_at_rh(&eye, &target, &up); - let origin = Point3::origin(); - relative_eq!(viewmatrix * eye, origin, epsilon = 1.0e-7) + + prop_assert!(relative_eq!(viewmatrix * eye, origin, epsilon = 1.0e-7) && relative_eq!( (viewmatrix * (target - eye)).normalize(), -Vector3::z(), epsilon = 1.0e-7 - ) + )) } - fn observer_frame_3(eye: Point3, target: Point3, up: Vector3) -> bool { + #[test] + fn observer_frame_3(eye in point3(), target in point3(), up in vector3()) { let observer = Isometry3::face_towards(&eye, &target, &up); - let origin = Point3::origin(); - relative_eq!(observer * origin, eye, epsilon = 1.0e-7) + + prop_assert!(relative_eq!(observer * origin, eye, epsilon = 1.0e-7) && relative_eq!( observer * Vector3::z(), (target - eye).normalize(), epsilon = 1.0e-7 - ) + )) } - fn inverse_is_identity(i: Isometry3, p: Point3, v: Vector3) -> bool { + #[test] + fn inverse_is_identity(i in isometry3(), p in point3(), v in vector3()) { let ii = i.inverse(); - relative_eq!(i * ii, Isometry3::identity(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(i * ii, Isometry3::identity(), epsilon = 1.0e-7) && relative_eq!(ii * i, Isometry3::identity(), epsilon = 1.0e-7) && relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) && relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) && relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) - && relative_eq!((ii * i) * v, v, epsilon = 1.0e-7) + && relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)) } - fn inverse_is_parts_inversion(t: Translation3, r: UnitQuaternion) -> bool { + #[test] + fn inverse_is_parts_inversion(t in translation3(), r in unit_quaternion()) { let i = t * r; - i.inverse() == r.inverse() * t.inverse() + prop_assert!(i.inverse() == r.inverse() * t.inverse()) } - fn multiply_equals_alga_transform(i: Isometry3, v: Vector3, p: Point3) -> bool { - i * v == i.transform_vector(&v) + #[test] + fn multiply_equals_alga_transform(i in isometry3(), v in vector3(), p in point3()) { + prop_assert!(i * v == i.transform_vector(&v) && i * p == i.transform_point(&p) && relative_eq!( i.inverse() * v, @@ -72,94 +79,97 @@ quickcheck!( i.inverse() * p, i.inverse_transform_point(&p), epsilon = 1.0e-7 - ) + )) } + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn composition2( - i: Isometry2, - uc: UnitComplex, - r: Rotation2, - t: Translation2, - v: Vector2, - p: Point2 - ) -> bool { + i in isometry2(), + uc in unit_complex(), + r in rotation2(), + t in translation2(), + v in vector2(), + p in point2() + ) { // (rotation × translation) * point = rotation × (translation * point) - relative_eq!((uc * t) * v, uc * v, epsilon = 1.0e-7) && - relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) && - relative_eq!((uc * t) * p, uc * (t * p), epsilon = 1.0e-7) && - relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((uc * t) * v, uc * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uc * t) * p, uc * (t * p), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7)); // (translation × rotation) * point = translation × (rotation * point) - (t * uc) * v == uc * v && - (t * r) * v == r * v && - (t * uc) * p == t * (uc * p) && - (t * r) * p == t * (r * p) && + prop_assert_eq!((t * uc) * v, uc * v); + prop_assert_eq!((t * r) * v, r * v); + prop_assert_eq!((t * uc) * p, t * (uc * p)); + prop_assert_eq!((t * r) * p, t * (r * p)); // (rotation × isometry) * point = rotation × (isometry * point) - relative_eq!((uc * i) * v, uc * (i * v), epsilon = 1.0e-7) && - relative_eq!((uc * i) * p, uc * (i * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((uc * i) * v, uc * (i * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uc * i) * p, uc * (i * p), epsilon = 1.0e-7)); // (isometry × rotation) * point = isometry × (rotation * point) - relative_eq!((i * uc) * v, i * (uc * v), epsilon = 1.0e-7) && - relative_eq!((i * uc) * p, i * (uc * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((i * uc) * v, i * (uc * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * uc) * p, i * (uc * p), epsilon = 1.0e-7)); // (translation × isometry) * point = translation × (isometry * point) - relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7) && - relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7)); // (isometry × translation) * point = isometry × (translation * point) - relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7) && - relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7) + prop_assert!(relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7)); } + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn composition3( - i: Isometry3, - uq: UnitQuaternion, - r: Rotation3, - t: Translation3, - v: Vector3, - p: Point3 - ) -> bool { + i in isometry3(), + uq in unit_quaternion(), + r in rotation3(), + t in translation3(), + v in vector3(), + p in point3() + ) { // (rotation × translation) * point = rotation × (translation * point) - relative_eq!((uq * t) * v, uq * v, epsilon = 1.0e-7) && - relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) && - relative_eq!((uq * t) * p, uq * (t * p), epsilon = 1.0e-7) && - relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((uq * t) * v, uq * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uq * t) * p, uq * (t * p), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7)); // (translation × rotation) * point = translation × (rotation * point) - (t * uq) * v == uq * v && - (t * r) * v == r * v && - (t * uq) * p == t * (uq * p) && - (t * r) * p == t * (r * p) && + prop_assert_eq!((t * uq) * v, uq * v); + prop_assert_eq!((t * r) * v, r * v); + prop_assert_eq!((t * uq) * p, t * (uq * p)); + prop_assert_eq!((t * r) * p, t * (r * p)); // (rotation × isometry) * point = rotation × (isometry * point) - relative_eq!((uq * i) * v, uq * (i * v), epsilon = 1.0e-7) && - relative_eq!((uq * i) * p, uq * (i * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((uq * i) * v, uq * (i * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uq * i) * p, uq * (i * p), epsilon = 1.0e-7)); // (isometry × rotation) * point = isometry × (rotation * point) - relative_eq!((i * uq) * v, i * (uq * v), epsilon = 1.0e-7) && - relative_eq!((i * uq) * p, i * (uq * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((i * uq) * v, i * (uq * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * uq) * p, i * (uq * p), epsilon = 1.0e-7)); // (translation × isometry) * point = translation × (isometry * point) - relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7) && - relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7) && + prop_assert!(relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7)); // (isometry × translation) * point = isometry × (translation * point) - relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7) && - relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7) + prop_assert!(relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7)); } + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn all_op_exist( - i: Isometry3, - uq: UnitQuaternion, - t: Translation3, - v: Vector3, - p: Point3, - r: Rotation3 - ) -> bool { + i in isometry3(), + uq in unit_quaternion(), + t in translation3(), + v in vector3(), + p in point3(), + r in rotation3() + ) { let iMi = i * i; let iMuq = i * uq; let iDi = i / i; @@ -210,7 +220,7 @@ quickcheck!( iDuq1 /= uq; iDuq2 /= &uq; - iMt == iMt1 + prop_assert!(iMt == iMt1 && iMt == iMt2 && iMi == iMi1 && iMi == iMi2 @@ -261,6 +271,6 @@ quickcheck!( && rMt == &r * t && uqMt == &uq * &t && uqMt == uq * &t - && uqMt == &uq * t + && uqMt == &uq * t) } ); diff --git a/tests/geometry/point.rs b/tests/geometry/point.rs index 896a09d6..22b0f598 100644 --- a/tests/geometry/point.rs +++ b/tests/geometry/point.rs @@ -92,11 +92,3 @@ fn to_homogeneous() { assert_eq!(a.to_homogeneous(), expected); } - -#[cfg(feature = "arbitrary")] -quickcheck!( - fn point_sub(pt1: Point3, pt2: Point3) -> bool { - let dpt = &pt2 - &pt1; - relative_eq!(pt2, pt1 + dpt, epsilon = 1.0e-7) - } -); diff --git a/tests/geometry/projection.rs b/tests/geometry/projection.rs index e4081996..1e0c9fd5 100644 --- a/tests/geometry/projection.rs +++ b/tests/geometry/projection.rs @@ -33,27 +33,32 @@ fn perspective_matrix_point_transformation() { ); } -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { - use na::{Orthographic3, Perspective3, Point3}; +#[cfg(feature = "proptest-support")] +mod proptest_tests { + use na::{Orthographic3, Perspective3}; - quickcheck! { - fn perspective_project_unproject(pt: Point3) -> bool { + use crate::proptest::*; + use proptest::{prop_assert, proptest}; + + proptest! { + #[test] + fn perspective_project_unproject(pt in point3()) { let proj = Perspective3::new(800.0 / 600.0, 3.14 / 2.0, 1.0, 1000.0); let projected = proj.project_point(&pt); let unprojected = proj.unproject_point(&projected); - relative_eq!(pt, unprojected, epsilon = 1.0e-7) + prop_assert!(relative_eq!(pt, unprojected, epsilon = 1.0e-7)) } - fn orthographic_project_unproject(pt: Point3) -> bool { + #[test] + fn orthographic_project_unproject(pt in point3()) { let proj = Orthographic3::new(1.0, 2.0, -3.0, -2.5, 10.0, 900.0); let projected = proj.project_point(&pt); let unprojected = proj.unproject_point(&projected); - relative_eq!(pt, unprojected, epsilon = 1.0e-7) + prop_assert!(relative_eq!(pt, unprojected, epsilon = 1.0e-7)) } } } diff --git a/tests/geometry/quaternion.rs b/tests/geometry/quaternion.rs index 5ff20a0e..75d8b870 100644 --- a/tests/geometry/quaternion.rs +++ b/tests/geometry/quaternion.rs @@ -1,15 +1,19 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] #![allow(non_snake_case)] -use na::{Point3, Quaternion, Rotation3, Unit, UnitQuaternion, Vector3}; +use na::{Unit, UnitQuaternion}; -quickcheck!( +use crate::proptest::*; +use proptest::{prop_assert, proptest}; + +proptest!( /* * * Euler angles. * */ - fn from_euler_angles(r: f64, p: f64, y: f64) -> bool { + #[test] + fn from_euler_angles(r in PROPTEST_F64, p in PROPTEST_F64, y in PROPTEST_F64) { let roll = UnitQuaternion::from_euler_angles(r, 0.0, 0.0); let pitch = UnitQuaternion::from_euler_angles(0.0, p, 0.0); let yaw = UnitQuaternion::from_euler_angles(0.0, 0.0, y); @@ -20,20 +24,21 @@ quickcheck!( let rpitch = pitch.to_rotation_matrix(); let ryaw = yaw.to_rotation_matrix(); - relative_eq!(rroll[(0, 0)], 1.0, epsilon = 1.0e-7) && // rotation wrt. x axis. - relative_eq!(rpitch[(1, 1)], 1.0, epsilon = 1.0e-7) && // rotation wrt. y axis. - relative_eq!(ryaw[(2, 2)], 1.0, epsilon = 1.0e-7) && // rotation wrt. z axis. - relative_eq!(yaw * pitch * roll, rpy, epsilon = 1.0e-7) + prop_assert!(relative_eq!(rroll[(0, 0)], 1.0, epsilon = 1.0e-7)); // rotation wrt. x axis. + prop_assert!(relative_eq!(rpitch[(1, 1)], 1.0, epsilon = 1.0e-7)); // rotation wrt. y axis. + prop_assert!(relative_eq!(ryaw[(2, 2)], 1.0, epsilon = 1.0e-7)); // rotation wrt. z axis. + prop_assert!(relative_eq!(yaw * pitch * roll, rpy, epsilon = 1.0e-7)); } - fn euler_angles(r: f64, p: f64, y: f64) -> bool { + #[test] + fn euler_angles(r in PROPTEST_F64, p in PROPTEST_F64, y in PROPTEST_F64) { let rpy = UnitQuaternion::from_euler_angles(r, p, y); let (roll, pitch, yaw) = rpy.euler_angles(); - relative_eq!( + prop_assert!(relative_eq!( UnitQuaternion::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7 - ) + )) } /* @@ -41,12 +46,13 @@ quickcheck!( * From/to rotation matrix. * */ - fn unit_quaternion_rotation_conversion(q: UnitQuaternion) -> bool { + #[test] + fn unit_quaternion_rotation_conversion(q in unit_quaternion()) { let r = q.to_rotation_matrix(); let qq = UnitQuaternion::from_rotation_matrix(&r); let rr = qq.to_rotation_matrix(); - relative_eq!(q, qq, epsilon = 1.0e-7) && relative_eq!(r, rr, epsilon = 1.0e-7) + prop_assert!(relative_eq!(q, qq, epsilon = 1.0e-7) && relative_eq!(r, rr, epsilon = 1.0e-7)) } /* @@ -55,24 +61,25 @@ quickcheck!( * */ + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn unit_quaternion_transformation( - q: UnitQuaternion, - v: Vector3, - p: Point3 - ) -> bool { + q in unit_quaternion(), + v in vector3(), + p in point3() + ) { let r = q.to_rotation_matrix(); let rv = r * v; let rp = r * p; - relative_eq!(q * v, rv, epsilon = 1.0e-7) + prop_assert!(relative_eq!(q * v, rv, epsilon = 1.0e-7) && relative_eq!(q * &v, rv, epsilon = 1.0e-7) && relative_eq!(&q * v, rv, epsilon = 1.0e-7) && relative_eq!(&q * &v, rv, epsilon = 1.0e-7) && relative_eq!(q * p, rp, epsilon = 1.0e-7) && relative_eq!(q * &p, rp, epsilon = 1.0e-7) && relative_eq!(&q * p, rp, epsilon = 1.0e-7) - && relative_eq!(&q * &p, rp, epsilon = 1.0e-7) + && relative_eq!(&q * &p, rp, epsilon = 1.0e-7)) } /* @@ -80,16 +87,17 @@ quickcheck!( * Inversion. * */ - fn unit_quaternion_inv(q: UnitQuaternion) -> bool { + #[test] + fn unit_quaternion_inv(q in unit_quaternion()) { let iq = q.inverse(); - relative_eq!(&iq * &q, UnitQuaternion::identity(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(&iq * &q, UnitQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!(iq * &q, UnitQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!(&iq * q, UnitQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!(iq * q, UnitQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!(&q * &iq, UnitQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!(q * &iq, UnitQuaternion::identity(), epsilon = 1.0e-7) && relative_eq!(&q * iq, UnitQuaternion::identity(), epsilon = 1.0e-7) - && relative_eq!(q * iq, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(q * iq, UnitQuaternion::identity(), epsilon = 1.0e-7)) } /* @@ -97,14 +105,15 @@ quickcheck!( * Quaterion * Vector == Rotation * Vector * */ - fn unit_quaternion_mul_vector(q: UnitQuaternion, v: Vector3, p: Point3) -> bool { + #[test] + fn unit_quaternion_mul_vector(q in unit_quaternion(), v in vector3(), p in point3()) { let r = q.to_rotation_matrix(); - relative_eq!(q * v, r * v, epsilon = 1.0e-7) && - relative_eq!(q * p, r * p, epsilon = 1.0e-7) && + prop_assert!(relative_eq!(q * v, r * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(q * p, r * p, epsilon = 1.0e-7)); // Equivalence q = -q - relative_eq!(UnitQuaternion::new_unchecked(-q.into_inner()) * v, r * v, epsilon = 1.0e-7) && - relative_eq!(UnitQuaternion::new_unchecked(-q.into_inner()) * p, r * p, epsilon = 1.0e-7) + prop_assert!(relative_eq!(UnitQuaternion::new_unchecked(-q.into_inner()) * v, r * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(UnitQuaternion::new_unchecked(-q.into_inner()) * p, r * p, epsilon = 1.0e-7)); } /* @@ -112,23 +121,25 @@ quickcheck!( * Unit quaternion double-covering. * */ - fn unit_quaternion_double_covering(q: UnitQuaternion) -> bool { + #[test] + fn unit_quaternion_double_covering(q in unit_quaternion()) { let mq = UnitQuaternion::new_unchecked(-q.into_inner()); - mq == q && mq.angle() == q.angle() && mq.axis() == q.axis() + prop_assert!(mq == q && mq.angle() == q.angle() && mq.axis() == q.axis()) } // Test that all operators (incl. all combinations of references) work. // See the top comment on `geometry/quaternion_ops.rs` for details on which operations are // supported. + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn all_op_exist( - q: Quaternion, - uq: UnitQuaternion, - v: Vector3, - p: Point3, - r: Rotation3, - s: f64 - ) -> bool { + q in quaternion(), + uq in unit_quaternion(), + v in vector3(), + p in point3(), + r in rotation3(), + s in PROPTEST_F64 + ) { let uv = Unit::new_normalize(v); let qpq = q + q; @@ -196,7 +207,7 @@ quickcheck!( uqDr1 /= r; uqDr2 /= &r; - qMs1 == qMs + prop_assert!(qMs1 == qMs && qMq1 == qMq && qMq1 == qMq2 && qpq1 == qpq @@ -250,6 +261,6 @@ quickcheck!( && uqMv == &uq * v && uqMuv == &uq * &uv && uqMuv == uq * &uv - && uqMuv == &uq * uv + && uqMuv == &uq * uv) } ); diff --git a/tests/geometry/rotation.rs b/tests/geometry/rotation.rs index 2ada2939..9a29772e 100644 --- a/tests/geometry/rotation.rs +++ b/tests/geometry/rotation.rs @@ -30,44 +30,50 @@ fn quaternion_euler_angles_issue_494() { assert_eq!(angs.2, 0.0); } -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { - use na::{self, Rotation2, Rotation3, Unit, Vector2, Vector3}; +#[cfg(feature = "proptest-support")] +mod proptest_tests { + use na::{self, Rotation2, Rotation3, Unit}; use simba::scalar::RealField; use std::f64; - quickcheck! { + use crate::proptest::*; + use proptest::{prop_assert, prop_assert_eq, proptest}; + + proptest! { /* * * Euler angles. * */ - fn from_euler_angles(r: f64, p: f64, y: f64) -> bool { + #[test] + fn from_euler_angles(r in PROPTEST_F64, p in PROPTEST_F64, y in PROPTEST_F64) { let roll = Rotation3::from_euler_angles(r, 0.0, 0.0); let pitch = Rotation3::from_euler_angles(0.0, p, 0.0); let yaw = Rotation3::from_euler_angles(0.0, 0.0, y); let rpy = Rotation3::from_euler_angles(r, p, y); - roll[(0, 0)] == 1.0 && // rotation wrt. x axis. - pitch[(1, 1)] == 1.0 && // rotation wrt. y axis. - yaw[(2, 2)] == 1.0 && // rotation wrt. z axis. - yaw * pitch * roll == rpy + prop_assert_eq!(roll[(0, 0)], 1.0); // rotation wrt. x axis. + prop_assert_eq!(pitch[(1, 1)], 1.0); // rotation wrt. y axis. + prop_assert_eq!(yaw[(2, 2)], 1.0); // rotation wrt. z axis. + prop_assert_eq!(yaw * pitch * roll, rpy); } - fn euler_angles(r: f64, p: f64, y: f64) -> bool { + #[test] + fn euler_angles(r in PROPTEST_F64, p in PROPTEST_F64, y in PROPTEST_F64) { let rpy = Rotation3::from_euler_angles(r, p, y); let (roll, pitch, yaw) = rpy.euler_angles(); - relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7) + prop_assert!(relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7)); } - fn euler_angles_gimble_lock(r: f64, y: f64) -> bool { + #[test] + fn euler_angles_gimble_lock(r in PROPTEST_F64, y in PROPTEST_F64) { let pos = Rotation3::from_euler_angles(r, f64::frac_pi_2(), y); let neg = Rotation3::from_euler_angles(r, -f64::frac_pi_2(), y); let (pos_r, pos_p, pos_y) = pos.euler_angles(); let (neg_r, neg_p, neg_y) = neg.euler_angles(); - relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7) && - relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7) + prop_assert!(relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7)); } /* @@ -75,26 +81,28 @@ mod quickcheck_tests { * Inversion is transposition. * */ - fn rotation_inv_3(a: Rotation3) -> bool { + #[test] + fn rotation_inv_3(a in rotation3()) { let ta = a.transpose(); let ia = a.inverse(); - ta == ia && - relative_eq!(&ta * &a, Rotation3::identity(), epsilon = 1.0e-7) && - relative_eq!(&ia * a, Rotation3::identity(), epsilon = 1.0e-7) && - relative_eq!( a * &ta, Rotation3::identity(), epsilon = 1.0e-7) && - relative_eq!( a * ia, Rotation3::identity(), epsilon = 1.0e-7) + prop_assert_eq!(ta, ia); + prop_assert!(relative_eq!(&ta * &a, Rotation3::identity(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(&ia * a, Rotation3::identity(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!( a * &ta, Rotation3::identity(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!( a * ia, Rotation3::identity(), epsilon = 1.0e-7)); } - fn rotation_inv_2(a: Rotation2) -> bool { + #[test] + fn rotation_inv_2(a in rotation2()) { let ta = a.transpose(); let ia = a.inverse(); - ta == ia && - relative_eq!(&ta * &a, Rotation2::identity(), epsilon = 1.0e-7) && - relative_eq!(&ia * a, Rotation2::identity(), epsilon = 1.0e-7) && - relative_eq!( a * &ta, Rotation2::identity(), epsilon = 1.0e-7) && - relative_eq!( a * ia, Rotation2::identity(), epsilon = 1.0e-7) + prop_assert_eq!(ta, ia); + prop_assert!(relative_eq!(&ta * &a, Rotation2::identity(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!(&ia * a, Rotation2::identity(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!( a * &ta, Rotation2::identity(), epsilon = 1.0e-7)); + prop_assert!(relative_eq!( a * ia, Rotation2::identity(), epsilon = 1.0e-7)); } /* @@ -102,12 +110,14 @@ mod quickcheck_tests { * Angle between vectors. * */ - fn angle_is_commutative_2(a: Vector2, b: Vector2) -> bool { - a.angle(&b) == b.angle(&a) + #[test] + fn angle_is_commutative_2(a in vector2(), b in vector2()) { + prop_assert_eq!(a.angle(&b), b.angle(&a)) } - fn angle_is_commutative_3(a: Vector3, b: Vector3) -> bool { - a.angle(&b) == b.angle(&a) + #[test] + fn angle_is_commutative_3(a in vector3(), b in vector3()) { + prop_assert_eq!(a.angle(&b), b.angle(&a)) } /* @@ -115,50 +125,46 @@ mod quickcheck_tests { * Rotation matrix between vectors. * */ - fn rotation_between_is_anticommutative_2(a: Vector2, b: Vector2) -> bool { + #[test] + fn rotation_between_is_anticommutative_2(a in vector2(), b in vector2()) { let rab = Rotation2::rotation_between(&a, &b); let rba = Rotation2::rotation_between(&b, &a); - relative_eq!(rab * rba, Rotation2::identity()) + prop_assert!(relative_eq!(rab * rba, Rotation2::identity())); } - fn rotation_between_is_anticommutative_3(a: Vector3, b: Vector3) -> bool { + #[test] + fn rotation_between_is_anticommutative_3(a in vector3(), b in vector3()) { let rots = (Rotation3::rotation_between(&a, &b), Rotation3::rotation_between(&b, &a)); if let (Some(rab), Some(rba)) = rots { - relative_eq!(rab * rba, Rotation3::identity(), epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!(rab * rba, Rotation3::identity(), epsilon = 1.0e-7)); } } - fn rotation_between_is_identity(v2: Vector2, v3: Vector3) -> bool { + #[test] + fn rotation_between_is_identity(v2 in vector2(), v3 in vector3()) { let vv2 = 3.42 * v2; let vv3 = 4.23 * v3; - relative_eq!(v2.angle(&vv2), 0.0, epsilon = 1.0e-7) && - relative_eq!(v3.angle(&vv3), 0.0, epsilon = 1.0e-7) && - relative_eq!(Rotation2::rotation_between(&v2, &vv2), Rotation2::identity()) && - Rotation3::rotation_between(&v3, &vv3).unwrap() == Rotation3::identity() + prop_assert!(relative_eq!(v2.angle(&vv2), 0.0, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(v3.angle(&vv3), 0.0, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(Rotation2::rotation_between(&v2, &vv2), Rotation2::identity())); + prop_assert_eq!(Rotation3::rotation_between(&v3, &vv3).unwrap(), Rotation3::identity()); } - fn rotation_between_2(a: Vector2, b: Vector2) -> bool { + #[test] + fn rotation_between_2(a in vector2(), b in vector2()) { if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) { let r = Rotation2::rotation_between(&a, &b); - relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)) } } - fn rotation_between_3(a: Vector3, b: Vector3) -> bool { + #[test] + fn rotation_between_3(a in vector3(), b in vector3()) { if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) { let r = Rotation3::rotation_between(&a, &b).unwrap(); - relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7) - } - else { - true + prop_assert!(relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)) } } @@ -168,25 +174,27 @@ mod quickcheck_tests { * Rotation construction. * */ - fn new_rotation_2(angle: f64) -> bool { + #[test] + fn new_rotation_2(angle in PROPTEST_F64) { let r = Rotation2::new(angle); let angle = na::wrap(angle, -f64::pi(), f64::pi()); - relative_eq!(r.angle(), angle, epsilon = 1.0e-7) + prop_assert!(relative_eq!(r.angle(), angle, epsilon = 1.0e-7)) } - fn new_rotation_3(axisangle: Vector3) -> bool { + #[test] + fn new_rotation_3(axisangle in vector3()) { let r = Rotation3::new(axisangle); if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) { let angle = na::wrap(angle, -f64::pi(), f64::pi()); - (relative_eq!(r.angle(), angle, epsilon = 1.0e-7) && + prop_assert!((relative_eq!(r.angle(), angle, epsilon = 1.0e-7) && relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) || (relative_eq!(r.angle(), -angle, epsilon = 1.0e-7) && - relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7)) + relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))) } else { - r == Rotation3::identity() + prop_assert_eq!(r, Rotation3::identity()) } } @@ -195,28 +203,30 @@ mod quickcheck_tests { * Rotation pow. * */ - fn powf_rotation_2(angle: f64, pow: f64) -> bool { + #[test] + fn powf_rotation_2(angle in PROPTEST_F64, pow in PROPTEST_F64) { let r = Rotation2::new(angle).powf(pow); let angle = na::wrap(angle, -f64::pi(), f64::pi()); let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi()); - relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) + prop_assert!(relative_eq!(r.angle(), pangle, epsilon = 1.0e-7)); } - fn powf_rotation_3(axisangle: Vector3, pow: f64) -> bool { + #[test] + fn powf_rotation_3(axisangle in vector3(), pow in PROPTEST_F64) { let r = Rotation3::new(axisangle).powf(pow); if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) { let angle = na::wrap(angle, -f64::pi(), f64::pi()); let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi()); - (relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) && + prop_assert!((relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) && relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) || (relative_eq!(r.angle(), -pangle, epsilon = 1.0e-7) && - relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7)) + relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))); } else { - r == Rotation3::identity() + prop_assert_eq!(r, Rotation3::identity()) } } } diff --git a/tests/geometry/similarity.rs b/tests/geometry/similarity.rs index b93d2e51..bcd430e9 100644 --- a/tests/geometry/similarity.rs +++ b/tests/geometry/similarity.rs @@ -1,41 +1,45 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] #![allow(non_snake_case)] -use na::{Isometry3, Point3, Similarity3, Translation3, UnitQuaternion, Vector3}; +use na::Similarity3; -quickcheck!( - fn inverse_is_identity(i: Similarity3, p: Point3, v: Vector3) -> bool { +use crate::proptest::*; +use proptest::{prop_assert, prop_assert_eq, proptest}; + +proptest!( + #[test] + fn inverse_is_identity(i in similarity3(), p in point3(), v in vector3()) { let ii = i.inverse(); - relative_eq!(i * ii, Similarity3::identity(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(i * ii, Similarity3::identity(), epsilon = 1.0e-7) && relative_eq!(ii * i, Similarity3::identity(), epsilon = 1.0e-7) && relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) && relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) && relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) - && relative_eq!((ii * i) * v, v, epsilon = 1.0e-7) + && relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)) } + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn inverse_is_parts_inversion( - t: Translation3, - r: UnitQuaternion, - scaling: f64 - ) -> bool { - if relative_eq!(scaling, 0.0) { - true - } else { + t in translation3(), + r in unit_quaternion(), + scaling in PROPTEST_F64 + ) { + if !relative_eq!(scaling, 0.0) { let s = Similarity3::from_isometry(t * r, scaling); - s.inverse() == Similarity3::from_scaling(1.0 / scaling) * r.inverse() * t.inverse() + prop_assert_eq!(s.inverse(), Similarity3::from_scaling(1.0 / scaling) * r.inverse() * t.inverse()) } } + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn multiply_equals_alga_transform( - s: Similarity3, - v: Vector3, - p: Point3 - ) -> bool { - s * v == s.transform_vector(&v) + s in similarity3(), + v in vector3(), + p in point3() + ) { + prop_assert!(s * v == s.transform_vector(&v) && s * p == s.transform_point(&p) && relative_eq!( s.inverse() * v, @@ -46,114 +50,114 @@ quickcheck!( s.inverse() * p, s.inverse_transform_point(&p), epsilon = 1.0e-7 - ) + )) } + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn composition( - i: Isometry3, - uq: UnitQuaternion, - t: Translation3, - v: Vector3, - p: Point3, - scaling: f64 - ) -> bool { - if relative_eq!(scaling, 0.0) { - return true; + i in isometry3(), + uq in unit_quaternion(), + t in translation3(), + v in vector3(), + p in point3(), + scaling in PROPTEST_F64 + ) { + if !relative_eq!(scaling, 0.0) { + let s = Similarity3::from_scaling(scaling); + + // (rotation × translation × scaling) × point = rotation × (translation × (scaling × point)) + prop_assert!(relative_eq!((uq * t * s) * v, uq * (scaling * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uq * t * s) * p, uq * (t * (scaling * p)), epsilon = 1.0e-7)); + + // (translation × rotation × scaling) × point = translation × (rotation × (scaling × point)) + prop_assert!(relative_eq!((t * uq * s) * v, uq * (scaling * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((t * uq * s) * p, t * (uq * (scaling * p)), epsilon = 1.0e-7)); + + // (rotation × isometry × scaling) × point = rotation × (isometry × (scaling × point)) + prop_assert!(relative_eq!((uq * i * s) * v, uq * (i * (scaling * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uq * i * s) * p, uq * (i * (scaling * p)), epsilon = 1.0e-7)); + + // (isometry × rotation × scaling) × point = isometry × (rotation × (scaling × point)) + prop_assert!(relative_eq!((i * uq * s) * v, i * (uq * (scaling * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * uq * s) * p, i * (uq * (scaling * p)), epsilon = 1.0e-7)); + + // (translation × isometry × scaling) × point = translation × (isometry × (scaling × point)) + prop_assert!(relative_eq!((t * i * s) * v, (i * (scaling * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((t * i * s) * p, t * (i * (scaling * p)), epsilon = 1.0e-7)); + + // (isometry × translation × scaling) × point = isometry × (translation × (scaling × point)) + prop_assert!(relative_eq!((i * t * s) * v, i * (scaling * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * t * s) * p, i * (t * (scaling * p)), epsilon = 1.0e-7)); + + + /* + * Same as before but with scaling on the middle. + */ + // (rotation × scaling × translation) × point = rotation × (scaling × (translation × point)) + prop_assert!(relative_eq!((uq * s * t) * v, uq * (scaling * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uq * s * t) * p, uq * (scaling * (t * p)), epsilon = 1.0e-7)); + + // (translation × scaling × rotation) × point = translation × (scaling × (rotation × point)) + prop_assert!(relative_eq!((t * s * uq) * v, scaling * (uq * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((t * s * uq) * p, t * (scaling * (uq * p)), epsilon = 1.0e-7)); + + // (rotation × scaling × isometry) × point = rotation × (scaling × (isometry × point)) + prop_assert!(relative_eq!((uq * s * i) * v, uq * (scaling * (i * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((uq * s * i) * p, uq * (scaling * (i * p)), epsilon = 1.0e-7)); + + // (isometry × scaling × rotation) × point = isometry × (scaling × (rotation × point)) + prop_assert!(relative_eq!((i * s * uq) * v, i * (scaling * (uq * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * s * uq) * p, i * (scaling * (uq * p)), epsilon = 1.0e-7)); + + // (translation × scaling × isometry) × point = translation × (scaling × (isometry × point)) + prop_assert!(relative_eq!((t * s * i) * v, (scaling * (i * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((t * s * i) * p, t * (scaling * (i * p)), epsilon = 1.0e-7)); + + // (isometry × scaling × translation) × point = isometry × (scaling × (translation × point)) + prop_assert!(relative_eq!((i * s * t) * v, i * (scaling * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((i * s * t) * p, i * (scaling * (t * p)), epsilon = 1.0e-7)); + + + /* + * Same as before but with scaling on the left. + */ + // (scaling × rotation × translation) × point = scaling × (rotation × (translation × point)) + prop_assert!(relative_eq!((s * uq * t) * v, scaling * (uq * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((s * uq * t) * p, scaling * (uq * (t * p)), epsilon = 1.0e-7)); + + // (scaling × translation × rotation) × point = scaling × (translation × (rotation × point)) + prop_assert!(relative_eq!((s * t * uq) * v, scaling * (uq * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((s * t * uq) * p, scaling * (t * (uq * p)), epsilon = 1.0e-7)); + + // (scaling × rotation × isometry) × point = scaling × (rotation × (isometry × point)) + prop_assert!(relative_eq!((s * uq * i) * v, scaling * (uq * (i * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((s * uq * i) * p, scaling * (uq * (i * p)), epsilon = 1.0e-7)); + + // (scaling × isometry × rotation) × point = scaling × (isometry × (rotation × point)) + prop_assert!(relative_eq!((s * i * uq) * v, scaling * (i * (uq * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((s * i * uq) * p, scaling * (i * (uq * p)), epsilon = 1.0e-7)); + + // (scaling × translation × isometry) × point = scaling × (translation × (isometry × point)) + prop_assert!(relative_eq!((s * t * i) * v, (scaling * (i * v)), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((s * t * i) * p, scaling * (t * (i * p)), epsilon = 1.0e-7)); + + // (scaling × isometry × translation) × point = scaling × (isometry × (translation × point)) + prop_assert!(relative_eq!((s * i * t) * v, scaling * (i * v), epsilon = 1.0e-7)); + prop_assert!(relative_eq!((s * i * t) * p, scaling * (i * (t * p)), epsilon = 1.0e-7)); } - - let s = Similarity3::from_scaling(scaling); - - // (rotation × translation × scaling) × point = rotation × (translation × (scaling × point)) - relative_eq!((uq * t * s) * v, uq * (scaling * v), epsilon = 1.0e-7) && - relative_eq!((uq * t * s) * p, uq * (t * (scaling * p)), epsilon = 1.0e-7) && - - // (translation × rotation × scaling) × point = translation × (rotation × (scaling × point)) - relative_eq!((t * uq * s) * v, uq * (scaling * v), epsilon = 1.0e-7) && - relative_eq!((t * uq * s) * p, t * (uq * (scaling * p)), epsilon = 1.0e-7) && - - // (rotation × isometry × scaling) × point = rotation × (isometry × (scaling × point)) - relative_eq!((uq * i * s) * v, uq * (i * (scaling * v)), epsilon = 1.0e-7) && - relative_eq!((uq * i * s) * p, uq * (i * (scaling * p)), epsilon = 1.0e-7) && - - // (isometry × rotation × scaling) × point = isometry × (rotation × (scaling × point)) - relative_eq!((i * uq * s) * v, i * (uq * (scaling * v)), epsilon = 1.0e-7) && - relative_eq!((i * uq * s) * p, i * (uq * (scaling * p)), epsilon = 1.0e-7) && - - // (translation × isometry × scaling) × point = translation × (isometry × (scaling × point)) - relative_eq!((t * i * s) * v, (i * (scaling * v)), epsilon = 1.0e-7) && - relative_eq!((t * i * s) * p, t * (i * (scaling * p)), epsilon = 1.0e-7) && - - // (isometry × translation × scaling) × point = isometry × (translation × (scaling × point)) - relative_eq!((i * t * s) * v, i * (scaling * v), epsilon = 1.0e-7) && - relative_eq!((i * t * s) * p, i * (t * (scaling * p)), epsilon = 1.0e-7) && - - - /* - * Same as before but with scaling on the middle. - */ - // (rotation × scaling × translation) × point = rotation × (scaling × (translation × point)) - relative_eq!((uq * s * t) * v, uq * (scaling * v), epsilon = 1.0e-7) && - relative_eq!((uq * s * t) * p, uq * (scaling * (t * p)), epsilon = 1.0e-7) && - - // (translation × scaling × rotation) × point = translation × (scaling × (rotation × point)) - relative_eq!((t * s * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) && - relative_eq!((t * s * uq) * p, t * (scaling * (uq * p)), epsilon = 1.0e-7) && - - // (rotation × scaling × isometry) × point = rotation × (scaling × (isometry × point)) - relative_eq!((uq * s * i) * v, uq * (scaling * (i * v)), epsilon = 1.0e-7) && - relative_eq!((uq * s * i) * p, uq * (scaling * (i * p)), epsilon = 1.0e-7) && - - // (isometry × scaling × rotation) × point = isometry × (scaling × (rotation × point)) - relative_eq!((i * s * uq) * v, i * (scaling * (uq * v)), epsilon = 1.0e-7) && - relative_eq!((i * s * uq) * p, i * (scaling * (uq * p)), epsilon = 1.0e-7) && - - // (translation × scaling × isometry) × point = translation × (scaling × (isometry × point)) - relative_eq!((t * s * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) && - relative_eq!((t * s * i) * p, t * (scaling * (i * p)), epsilon = 1.0e-7) && - - // (isometry × scaling × translation) × point = isometry × (scaling × (translation × point)) - relative_eq!((i * s * t) * v, i * (scaling * v), epsilon = 1.0e-7) && - relative_eq!((i * s * t) * p, i * (scaling * (t * p)), epsilon = 1.0e-7) && - - - /* - * Same as before but with scaling on the left. - */ - // (scaling × rotation × translation) × point = scaling × (rotation × (translation × point)) - relative_eq!((s * uq * t) * v, scaling * (uq * v), epsilon = 1.0e-7) && - relative_eq!((s * uq * t) * p, scaling * (uq * (t * p)), epsilon = 1.0e-7) && - - // (scaling × translation × rotation) × point = scaling × (translation × (rotation × point)) - relative_eq!((s * t * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) && - relative_eq!((s * t * uq) * p, scaling * (t * (uq * p)), epsilon = 1.0e-7) && - - // (scaling × rotation × isometry) × point = scaling × (rotation × (isometry × point)) - relative_eq!((s * uq * i) * v, scaling * (uq * (i * v)), epsilon = 1.0e-7) && - relative_eq!((s * uq * i) * p, scaling * (uq * (i * p)), epsilon = 1.0e-7) && - - // (scaling × isometry × rotation) × point = scaling × (isometry × (rotation × point)) - relative_eq!((s * i * uq) * v, scaling * (i * (uq * v)), epsilon = 1.0e-7) && - relative_eq!((s * i * uq) * p, scaling * (i * (uq * p)), epsilon = 1.0e-7) && - - // (scaling × translation × isometry) × point = scaling × (translation × (isometry × point)) - relative_eq!((s * t * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) && - relative_eq!((s * t * i) * p, scaling * (t * (i * p)), epsilon = 1.0e-7) && - - // (scaling × isometry × translation) × point = scaling × (isometry × (translation × point)) - relative_eq!((s * i * t) * v, scaling * (i * v), epsilon = 1.0e-7) && - relative_eq!((s * i * t) * p, scaling * (i * (t * p)), epsilon = 1.0e-7) } + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn all_op_exist( - s: Similarity3, - i: Isometry3, - uq: UnitQuaternion, - t: Translation3, - v: Vector3, - p: Point3 - ) -> bool { + s in similarity3(), + i in isometry3(), + uq in unit_quaternion(), + t in translation3(), + v in vector3(), + p in point3() + ) { let sMs = s * s; let sMuq = s * uq; let sDs = s / s; @@ -216,7 +220,7 @@ quickcheck!( sDi1 /= i; sDi2 /= &i; - sMt == sMt1 + prop_assert!(sMt == sMt1 && sMt == sMt2 && sMs == sMs1 && sMs == sMs2 @@ -271,6 +275,6 @@ quickcheck!( && iMs == &i * s && iDs == &i / &s && iDs == i / &s - && iDs == &i / s + && iDs == &i / s) } ); diff --git a/tests/geometry/unit_complex.rs b/tests/geometry/unit_complex.rs index 263ecd33..a24a80e2 100644 --- a/tests/geometry/unit_complex.rs +++ b/tests/geometry/unit_complex.rs @@ -1,20 +1,25 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] #![allow(non_snake_case)] -use na::{Point2, Rotation2, Unit, UnitComplex, Vector2}; +use na::{Unit, UnitComplex}; -quickcheck!( +use crate::proptest::*; +use proptest::{prop_assert, proptest}; + +proptest!( /* * * From/to rotation matrix. * */ - fn unit_complex_rotation_conversion(c: UnitComplex) -> bool { + #[test] + fn unit_complex_rotation_conversion(c in unit_complex()) { let r = c.to_rotation_matrix(); let cc = UnitComplex::from_rotation_matrix(&r); let rr = cc.to_rotation_matrix(); - relative_eq!(c, cc, epsilon = 1.0e-7) && relative_eq!(r, rr, epsilon = 1.0e-7) + prop_assert!(relative_eq!(c, cc, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(r, rr, epsilon = 1.0e-7)); } /* @@ -22,19 +27,20 @@ quickcheck!( * Point/Vector transformation. * */ - fn unit_complex_transformation(c: UnitComplex, v: Vector2, p: Point2) -> bool { + #[test] + fn unit_complex_transformation(c in unit_complex(), v in vector2(), p in point2()) { let r = c.to_rotation_matrix(); let rv = r * v; let rp = r * p; - relative_eq!(c * v, rv, epsilon = 1.0e-7) + prop_assert!(relative_eq!(c * v, rv, epsilon = 1.0e-7) && relative_eq!(c * &v, rv, epsilon = 1.0e-7) && relative_eq!(&c * v, rv, epsilon = 1.0e-7) && relative_eq!(&c * &v, rv, epsilon = 1.0e-7) && relative_eq!(c * p, rp, epsilon = 1.0e-7) && relative_eq!(c * &p, rp, epsilon = 1.0e-7) && relative_eq!(&c * p, rp, epsilon = 1.0e-7) - && relative_eq!(&c * &p, rp, epsilon = 1.0e-7) + && relative_eq!(&c * &p, rp, epsilon = 1.0e-7)) } /* @@ -42,39 +48,43 @@ quickcheck!( * Inversion. * */ - fn unit_complex_inv(c: UnitComplex) -> bool { + #[test] + fn unit_complex_inv(c in unit_complex()) { let iq = c.inverse(); - relative_eq!(&iq * &c, UnitComplex::identity(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(&iq * &c, UnitComplex::identity(), epsilon = 1.0e-7) && relative_eq!(iq * &c, UnitComplex::identity(), epsilon = 1.0e-7) && relative_eq!(&iq * c, UnitComplex::identity(), epsilon = 1.0e-7) && relative_eq!(iq * c, UnitComplex::identity(), epsilon = 1.0e-7) && relative_eq!(&c * &iq, UnitComplex::identity(), epsilon = 1.0e-7) && relative_eq!(c * &iq, UnitComplex::identity(), epsilon = 1.0e-7) && relative_eq!(&c * iq, UnitComplex::identity(), epsilon = 1.0e-7) - && relative_eq!(c * iq, UnitComplex::identity(), epsilon = 1.0e-7) + && relative_eq!(c * iq, UnitComplex::identity(), epsilon = 1.0e-7)) } /* * - * Quaterion * Vector == Rotation * Vector + * Quaternion * Vector == Rotation * Vector * */ - fn unit_complex_mul_vector(c: UnitComplex, v: Vector2, p: Point2) -> bool { + #[test] + fn unit_complex_mul_vector(c in unit_complex(), v in vector2(), p in point2()) { let r = c.to_rotation_matrix(); - relative_eq!(c * v, r * v, epsilon = 1.0e-7) && relative_eq!(c * p, r * p, epsilon = 1.0e-7) + prop_assert!(relative_eq!(c * v, r * v, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(c * p, r * p, epsilon = 1.0e-7)); } // Test that all operators (incl. all combinations of references) work. // See the top comment on `geometry/quaternion_ops.rs` for details on which operations are // supported. + #[test] #[cfg_attr(rustfmt, rustfmt_skip)] fn all_op_exist( - uc: UnitComplex, - v: Vector2, - p: Point2, - r: Rotation2 - ) -> bool { + uc in unit_complex(), + v in vector2(), + p in point2(), + r in rotation2() + ) { let uv = Unit::new_normalize(v); let ucMuc = uc * uc; @@ -112,7 +122,7 @@ quickcheck!( ucDr1 /= r; ucDr2 /= &r; - ucMuc1 == ucMuc + prop_assert!(ucMuc1 == ucMuc && ucMuc1 == ucMuc2 && ucMr1 == ucMr && ucMr1 == ucMr2 @@ -146,6 +156,6 @@ quickcheck!( && ucMv == &uc * v && ucMuv == &uc * &uv && ucMuv == uc * &uv - && ucMuv == &uc * uv + && ucMuv == &uc * uv) } ); diff --git a/tests/lib.rs b/tests/lib.rs index 29e6cbbe..ca7faa74 100644 --- a/tests/lib.rs +++ b/tests/lib.rs @@ -12,9 +12,6 @@ extern crate approx; extern crate mint; extern crate nalgebra as na; extern crate num_traits as num; -#[cfg(feature = "arbitrary")] -#[macro_use] -extern crate quickcheck; mod core; mod geometry; diff --git a/tests/linalg/balancing.rs b/tests/linalg/balancing.rs index 401f672a..5d250b2c 100644 --- a/tests/linalg/balancing.rs +++ b/tests/linalg/balancing.rs @@ -1,26 +1,28 @@ -#![cfg(feature = "arbitrary")] - -use std::cmp; +#![cfg(feature = "proptest-support")] use na::balancing; -use na::{DMatrix, Matrix4}; +use na::DMatrix; -quickcheck! { - fn balancing_parlett_reinsch(n: usize) -> bool { - let n = cmp::min(n, 10); +use crate::proptest::*; +use proptest::{prop_assert_eq, proptest}; + +proptest! { + #[test] + fn balancing_parlett_reinsch(n in PROPTEST_MATRIX_DIM) { let m = DMatrix::::new_random(n, n); let mut balanced = m.clone(); let d = balancing::balance_parlett_reinsch(&mut balanced); balancing::unbalance(&mut balanced, &d); - balanced == m + prop_assert_eq!(balanced, m); } - fn balancing_parlett_reinsch_static(m: Matrix4) -> bool { + #[test] + fn balancing_parlett_reinsch_static(m in matrix4()) { let mut balanced = m; let d = balancing::balance_parlett_reinsch(&mut balanced); balancing::unbalance(&mut balanced, &d); - balanced == m + prop_assert_eq!(balanced, m); } } diff --git a/tests/linalg/bidiagonal.rs b/tests/linalg/bidiagonal.rs index 8fefb4a2..aaee393f 100644 --- a/tests/linalg/bidiagonal.rs +++ b/tests/linalg/bidiagonal.rs @@ -1,63 +1,61 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr) => { mod $module { - use na::{DMatrix, Matrix2, Matrix3x5, Matrix4, Matrix5x3}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; - quickcheck! { - fn bidiagonal(m: DMatrix<$scalar>) -> bool { - let m = m.map(|e| e.0); - if m.len() == 0 { - return true; - } + use crate::proptest::*; + use proptest::{prop_assert, proptest}; + proptest! { + #[test] + fn bidiagonal(m in dmatrix_($scalar)) { let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); - relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)) } - fn bidiagonal_static_5_3(m: Matrix5x3<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn bidiagonal_static_5_3(m in matrix5x3_($scalar)) { let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); - relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)) } - fn bidiagonal_static_3_5(m: Matrix3x5<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn bidiagonal_static_3_5(m in matrix3x5_($scalar)) { let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); - relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)) } - fn bidiagonal_static_square(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn bidiagonal_static_square(m in matrix4_($scalar)) { let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); - relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)) } - fn bidiagonal_static_square_2x2(m: Matrix2<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn bidiagonal_static_square_2x2(m in matrix2_($scalar)) { let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); - relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)) } } } } ); -gen_tests!(complex, RandComplex); -gen_tests!(f64, RandScalar); +gen_tests!(complex, complex_f64()); +gen_tests!(f64, PROPTEST_F64); #[test] fn bidiagonal_identity() { diff --git a/tests/linalg/cholesky.rs b/tests/linalg/cholesky.rs index a89802b2..5ea0edaf 100644 --- a/tests/linalg/cholesky.rs +++ b/tests/linalg/cholesky.rs @@ -1,4 +1,4 @@ -#![cfg(all(feature = "arbitrary", feature = "debug"))] +#![cfg(all(feature = "proptest-support", feature = "debug"))] macro_rules! gen_tests( ($module: ident, $scalar: ty) => { @@ -9,32 +9,30 @@ macro_rules! gen_tests( use rand::random; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; - use std::cmp; - quickcheck! { - fn cholesky(n: usize) -> bool { - let m = RandomSDP::new(Dynamic::new(n.max(1).min(50)), || random::<$scalar>().0).unwrap(); + use crate::proptest::*; + use proptest::{prop_assert, proptest}; + + proptest! { + #[test] + fn cholesky(n in PROPTEST_MATRIX_DIM) { + let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap(); let l = m.clone().cholesky().unwrap().unpack(); - relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7)); } - fn cholesky_static(_m: RandomSDP) -> bool { + #[test] + fn cholesky_static(_n in PROPTEST_MATRIX_DIM) { let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap(); let chol = m.cholesky().unwrap(); let l = chol.unpack(); - if !relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7) { - false - } - else { - true - } + prop_assert!(relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7)); } - fn cholesky_solve(n: usize, nb: usize) -> bool { - let n = n.max(1).min(50); + #[test] + fn cholesky_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) { let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap(); - let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. let chol = m.clone().cholesky().unwrap(); let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); @@ -43,11 +41,12 @@ macro_rules! gen_tests( let sol1 = chol.solve(&b1); let sol2 = chol.solve(&b2); - relative_eq!(&m * &sol1, b1, epsilon = 1.0e-7) && - relative_eq!(&m * &sol2, b2, epsilon = 1.0e-7) + prop_assert!(relative_eq!(&m * &sol1, b1, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-7)); } - fn cholesky_solve_static(_n: usize) -> bool { + #[test] + fn cholesky_solve_static(_n in PROPTEST_MATRIX_DIM) { let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap(); let chol = m.clone().cholesky().unwrap(); let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); @@ -56,29 +55,32 @@ macro_rules! gen_tests( let sol1 = chol.solve(&b1); let sol2 = chol.solve(&b2); - relative_eq!(m * sol1, b1, epsilon = 1.0e-7) && - relative_eq!(m * sol2, b2, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m * sol1, b1, epsilon = 1.0e-7)); + prop_assert!(relative_eq!(m * sol2, b2, epsilon = 1.0e-7)); } - fn cholesky_inverse(n: usize) -> bool { - let m = RandomSDP::new(Dynamic::new(n.max(1).min(50)), || random::<$scalar>().0).unwrap(); + #[test] + fn cholesky_inverse(n in PROPTEST_MATRIX_DIM) { + let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap(); let m1 = m.clone().cholesky().unwrap().inverse(); let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7) + prop_assert!(id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7)); } - fn cholesky_inverse_static(_n: usize) -> bool { + #[test] + fn cholesky_inverse_static(_n in PROPTEST_MATRIX_DIM) { let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap(); let m1 = m.clone().cholesky().unwrap().inverse(); let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7) + prop_assert!(id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7)); } - fn cholesky_rank_one_update(_n: usize) -> bool { + #[test] + fn cholesky_rank_one_update(_n in PROPTEST_MATRIX_DIM) { let mut m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap(); let x = Vector4::<$scalar>::new_random().map(|e| e.0); @@ -96,10 +98,11 @@ macro_rules! gen_tests( // updates m manually m.gerc(sigma_scalar, &x, &x, one); // m += sigma * x * x.adjoint() - relative_eq!(m, m_chol_updated, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)); } - fn cholesky_insert_column(n: usize) -> bool { + #[test] + fn cholesky_insert_column(n in PROPTEST_MATRIX_DIM) { let n = n.max(1).min(10); let j = random::() % n; let m_updated = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap(); @@ -112,10 +115,11 @@ macro_rules! gen_tests( let chol = m.clone().cholesky().unwrap().insert_column(j, col); let m_chol_updated = chol.l() * chol.l().adjoint(); - relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)); } - fn cholesky_remove_column(n: usize) -> bool { + #[test] + fn cholesky_remove_column(n in PROPTEST_MATRIX_DIM) { let n = n.max(1).min(10); let j = random::() % n; let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap(); @@ -127,7 +131,7 @@ macro_rules! gen_tests( // remove column from m let m_updated = m.remove_column(j).remove_row(j); - relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)); } } } diff --git a/tests/linalg/col_piv_qr.rs b/tests/linalg/col_piv_qr.rs index e9ffba86..40ebfb01 100644 --- a/tests/linalg/col_piv_qr.rs +++ b/tests/linalg/col_piv_qr.rs @@ -22,133 +22,124 @@ fn col_piv_qr() { assert!(relative_eq!(m, qr, epsilon = 1.0e-7)); } -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { +#[cfg(feature = "proptest-support")] +mod proptest_tests { macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr ,$scalar_type: ty) => { mod $module { - use na::{DMatrix, DVector, Matrix3x5, Matrix4, Matrix4x3, Matrix5x3, Vector4}; + use na::{DMatrix, DVector, Matrix4x3, Vector4}; use std::cmp; - #[allow(unused_imports)] - use crate::core::helper::{RandScalar, RandComplex}; - quickcheck! { - fn col_piv_qr(m: DMatrix<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[allow(unused_imports)] + use crate::core::helper::{RandComplex, RandScalar}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; + + proptest! { + #[test] + fn col_piv_qr(m in dmatrix_($scalar)) { let col_piv_qr = m.clone().col_piv_qr(); let (q, r, p) = col_piv_qr.unpack(); let mut qr = &q * &r; p.inv_permute_columns(&mut qr); - println!("m: {}", m); - println!("col_piv_qr: {}", &q * &r); - - relative_eq!(m, &qr, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, &qr, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn col_piv_qr_static_5_3(m: Matrix5x3<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn col_piv_qr_static_5_3(m in matrix5x3_($scalar)) { let col_piv_qr = m.col_piv_qr(); let (q, r, p) = col_piv_qr.unpack(); let mut qr = q * r; p.inv_permute_columns(&mut qr); - relative_eq!(m, qr, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, qr, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn col_piv_qr_static_3_5(m: Matrix3x5<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn col_piv_qr_static_3_5(m in matrix3x5_($scalar)) { let col_piv_qr = m.col_piv_qr(); let (q, r, p) = col_piv_qr.unpack(); let mut qr = q * r; p.inv_permute_columns(&mut qr); - relative_eq!(m, qr, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, qr, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn col_piv_qr_static_square(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn col_piv_qr_static_square(m in matrix4_($scalar)) { let col_piv_qr = m.col_piv_qr(); let (q, r, p) = col_piv_qr.unpack(); let mut qr = q * r; p.inv_permute_columns(&mut qr); - println!("{}{}{}{}", q, r, qr, m); - - relative_eq!(m, qr, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, qr, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn col_piv_qr_solve(n: usize, nb: usize) -> bool { + #[test] + fn col_piv_qr_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) { if n != 0 && nb != 0 { let n = cmp::min(n, 50); // To avoid slowing down the test too much. let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); let col_piv_qr = m.clone().col_piv_qr(); - let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); - let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); + let b1 = DVector::<$scalar_type>::new_random(n).map(|e| e.0); + let b2 = DMatrix::<$scalar_type>::new_random(n, nb).map(|e| e.0); if col_piv_qr.is_invertible() { let sol1 = col_piv_qr.solve(&b1).unwrap(); let sol2 = col_piv_qr.solve(&b2).unwrap(); - return relative_eq!(&m * sol1, b1, epsilon = 1.0e-6) && - relative_eq!(&m * sol2, b2, epsilon = 1.0e-6) + prop_assert!(relative_eq!(&m * sol1, b1, epsilon = 1.0e-6)); + prop_assert!(relative_eq!(&m * sol2, b2, epsilon = 1.0e-6)); } } - - return true; } - fn col_piv_qr_solve_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn col_piv_qr_solve_static(m in matrix4_($scalar)) { let col_piv_qr = m.col_piv_qr(); - let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); - let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); + let b1 = Vector4::<$scalar_type>::new_random().map(|e| e.0); + let b2 = Matrix4x3::<$scalar_type>::new_random().map(|e| e.0); if col_piv_qr.is_invertible() { let sol1 = col_piv_qr.solve(&b1).unwrap(); let sol2 = col_piv_qr.solve(&b2).unwrap(); - relative_eq!(m * sol1, b1, epsilon = 1.0e-6) && - relative_eq!(m * sol2, b2, epsilon = 1.0e-6) - } - else { - false + prop_assert!(relative_eq!(m * sol1, b1, epsilon = 1.0e-6)); + prop_assert!(relative_eq!(m * sol2, b2, epsilon = 1.0e-6)); } } - fn col_piv_qr_inverse(n: usize) -> bool { + #[test] + fn col_piv_qr_inverse(n in PROPTEST_MATRIX_DIM) { let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); if let Some(m1) = m.clone().col_piv_qr().try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } } - fn col_piv_qr_inverse_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn col_piv_qr_inverse_static(m in matrix4_($scalar)) { let col_piv_qr = m.col_piv_qr(); if let Some(m1) = col_piv_qr.try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } } } @@ -156,6 +147,6 @@ mod quickcheck_tests { } ); - gen_tests!(complex, RandComplex); - gen_tests!(f64, RandScalar); + gen_tests!(complex, complex_f64(), RandComplex); + gen_tests!(f64, PROPTEST_F64, RandScalar); } diff --git a/tests/linalg/eigen.rs b/tests/linalg/eigen.rs index c0d3171f..e9c0522b 100644 --- a/tests/linalg/eigen.rs +++ b/tests/linalg/eigen.rs @@ -1,66 +1,74 @@ use na::DMatrix; -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { +#[cfg(feature = "proptest-support")] +mod proptest_tests { macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr, $scalar_type: ty) => { mod $module { - use na::{DMatrix, Matrix2, Matrix3, Matrix4}; + use na::DMatrix; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; use std::cmp; - quickcheck! { - fn symmetric_eigen(n: usize) -> bool { + use crate::proptest::*; + use proptest::{prop_assert, proptest}; + + proptest! { + #[test] + fn symmetric_eigen(n in PROPTEST_MATRIX_DIM) { let n = cmp::max(1, cmp::min(n, 10)); - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0).hermitian_part(); let eig = m.clone().symmetric_eigen(); let recomp = eig.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)) } - fn symmetric_eigen_singular(n: usize) -> bool { + #[test] + fn symmetric_eigen_singular(n in PROPTEST_MATRIX_DIM) { let n = cmp::max(1, cmp::min(n, 10)); - let mut m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); + let mut m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0).hermitian_part(); m.row_mut(n / 2).fill(na::zero()); m.column_mut(n / 2).fill(na::zero()); let eig = m.clone().symmetric_eigen(); let recomp = eig.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)) } - fn symmetric_eigen_static_square_4x4(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0).hermitian_part(); + #[test] + fn symmetric_eigen_static_square_4x4(m in matrix4_($scalar)) { + let m = m.hermitian_part(); let eig = m.symmetric_eigen(); let recomp = eig.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)) } - fn symmetric_eigen_static_square_3x3(m: Matrix3<$scalar>) -> bool { - let m = m.map(|e| e.0).hermitian_part(); + #[test] + fn symmetric_eigen_static_square_3x3(m in matrix3_($scalar)) { + let m = m.hermitian_part(); let eig = m.symmetric_eigen(); let recomp = eig.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)) } - fn symmetric_eigen_static_square_2x2(m: Matrix2<$scalar>) -> bool { - let m = m.map(|e| e.0).hermitian_part(); + #[test] + fn symmetric_eigen_static_square_2x2(m in matrix2_($scalar)) { + let m = m.hermitian_part(); let eig = m.symmetric_eigen(); let recomp = eig.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)) } } } } ); - gen_tests!(complex, RandComplex); - gen_tests!(f64, RandScalar); + gen_tests!(complex, complex_f64(), RandComplex); + gen_tests!(f64, PROPTEST_F64, RandScalar); } // Test proposed on the issue #176 of rulinalg. diff --git a/tests/linalg/exp.rs b/tests/linalg/exp.rs index f5b5243a..6a643037 100644 --- a/tests/linalg/exp.rs +++ b/tests/linalg/exp.rs @@ -71,7 +71,6 @@ mod tests { let m22 = ad_2.exp() * (delta * delta_2.cosh() + (d - a) * delta_2.sinh()); let f = Matrix2::new(m11, m12, m21, m22) / delta; - println!("a: {}", m); assert!(relative_eq!(f, m.exp(), epsilon = 1.0e-7)); break; } diff --git a/tests/linalg/full_piv_lu.rs b/tests/linalg/full_piv_lu.rs index 0bb832cd..f782d8fd 100644 --- a/tests/linalg/full_piv_lu.rs +++ b/tests/linalg/full_piv_lu.rs @@ -40,101 +40,96 @@ fn full_piv_lu_simple_with_pivot() { } #[cfg(feature = "arbitrary")] -mod quickcheck_tests { +mod proptest_tests { macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr, $scalar_type: ty) => { mod $module { use std::cmp; use num::One; - use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4}; + use na::{DMatrix, Matrix4x3, DVector, Vector4}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; - quickcheck! { - fn full_piv_lu(m: DMatrix<$scalar>) -> bool { - let mut m = m.map(|e| e.0); - if m.len() == 0 { - m = DMatrix::<$scalar>::new_random(1, 1).map(|e| e.0); - } + use crate::proptest::*; + use proptest::{prop_assert, proptest}; + proptest! { + #[test] + fn full_piv_lu(m in dmatrix_($scalar)) { let lu = m.clone().full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)) } - fn full_piv_lu_static_3_5(m: Matrix3x5<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn full_piv_lu_static_3_5(m in matrix3x5_($scalar)) { let lu = m.full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)) } - fn full_piv_lu_static_5_3(m: Matrix5x3<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn full_piv_lu_static_5_3(m in matrix5x3_($scalar)) { let lu = m.full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)) } - fn full_piv_lu_static_square(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn full_piv_lu_static_square(m in matrix4_($scalar)) { let lu = m.full_piv_lu(); let (p, l, u, q) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); q.inv_permute_columns(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)) } - fn full_piv_lu_solve(n: usize, nb: usize) -> bool { - if n != 0 && nb != 0 { - let n = cmp::min(n, 50); // To avoid slowing down the test too much. - let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + #[test] + fn full_piv_lu_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) { + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); - let lu = m.clone().full_piv_lu(); - let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); - let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); + let lu = m.clone().full_piv_lu(); + let b1 = DVector::<$scalar_type>::new_random(n).map(|e| e.0); + let b2 = DMatrix::<$scalar_type>::new_random(n, nb).map(|e| e.0); - let sol1 = lu.solve(&b1); - let sol2 = lu.solve(&b2); + let sol1 = lu.solve(&b1); + let sol2 = lu.solve(&b2); - return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && - (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) - } - - return true; + prop_assert!(sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)); + prop_assert!(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)); } - fn full_piv_lu_solve_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn full_piv_lu_solve_static(m in matrix4_($scalar)) { let lu = m.full_piv_lu(); - let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); - let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); + let b1 = Vector4::<$scalar_type>::new_random().map(|e| e.0); + let b2 = Matrix4x3::<$scalar_type>::new_random().map(|e| e.0); let sol1 = lu.solve(&b1); let sol2 = lu.solve(&b2); - return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && - (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) + prop_assert!(sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)); + prop_assert!(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)); } - fn full_piv_lu_inverse(n: usize) -> bool { + #[test] + fn full_piv_lu_inverse(n in PROPTEST_MATRIX_DIM) { let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); let mut l = m.lower_triangle(); let mut u = m.upper_triangle(); @@ -148,21 +143,20 @@ mod quickcheck_tests { let id1 = &m * &m1; let id2 = &m1 * &m; - return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5); + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } - fn full_piv_lu_inverse_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn full_piv_lu_inverse_static(m in matrix4_($scalar)) { let lu = m.full_piv_lu(); if let Some(m1) = lu.try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } } } @@ -170,8 +164,8 @@ mod quickcheck_tests { } ); - gen_tests!(complex, RandComplex); - gen_tests!(f64, RandScalar); + gen_tests!(complex, complex_f64(), RandComplex); + gen_tests!(f64, PROPTEST_F64, RandScalar); } /* diff --git a/tests/linalg/hessenberg.rs b/tests/linalg/hessenberg.rs index ec499f82..1dc35c3b 100644 --- a/tests/linalg/hessenberg.rs +++ b/tests/linalg/hessenberg.rs @@ -1,4 +1,4 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] use na::Matrix2; @@ -11,40 +11,39 @@ fn hessenberg_simple() { } macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr) => { mod $module { - use na::{DMatrix, Matrix2, Matrix4}; - use std::cmp; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; - quickcheck! { - fn hessenberg(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + use crate::proptest::*; + use proptest::{prop_assert, proptest}; + proptest! { + #[test] + fn hessenberg(m in dmatrix_($scalar)) { let hess = m.clone().hessenberg(); let (p, h) = hess.unpack(); - relative_eq!(m, &p * h * p.adjoint(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, &p * h * p.adjoint(), epsilon = 1.0e-7)) } - fn hessenberg_static_mat2(m: Matrix2<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn hessenberg_static_mat2(m in matrix2_($scalar)) { let hess = m.hessenberg(); let (p, h) = hess.unpack(); - relative_eq!(m, p * h * p.adjoint(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, p * h * p.adjoint(), epsilon = 1.0e-7)) } - fn hessenberg_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn hessenberg_static(m in matrix4_($scalar)) { let hess = m.hessenberg(); let (p, h) = hess.unpack(); - relative_eq!(m, p * h * p.adjoint(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, p * h * p.adjoint(), epsilon = 1.0e-7)) } } } } ); -gen_tests!(complex, RandComplex); -gen_tests!(f64, RandScalar); +gen_tests!(complex, complex_f64()); +gen_tests!(f64, PROPTEST_F64); diff --git a/tests/linalg/lu.rs b/tests/linalg/lu.rs index 7fab6b01..69708e3b 100644 --- a/tests/linalg/lu.rs +++ b/tests/linalg/lu.rs @@ -38,103 +38,90 @@ fn lu_simple_with_pivot() { assert!(relative_eq!(m, lu, epsilon = 1.0e-7)); } -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { - #[allow(unused_imports)] - use crate::core::helper::{RandComplex, RandScalar}; - +#[cfg(feature = "proptest-support")] +mod proptest_tests { macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr, $scalar_type: ty) => { mod $module { use std::cmp; - use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4}; + use na::{DMatrix, Matrix4x3, DVector, Vector4}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn lu(m: DMatrix<$scalar>) -> bool { - let mut m = m; - if m.len() == 0 { - m = DMatrix::<$scalar>::new_random(1, 1); - } - - let m = m.map(|e| e.0); - + proptest! { + #[test] + fn lu(m in dmatrix_($scalar)) { let lu = m.clone().lu(); let (p, l, u) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)) } - fn lu_static_3_5(m: Matrix3x5<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn lu_static_3_5(m in matrix3x5_($scalar)) { let lu = m.lu(); let (p, l, u) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)) } - fn lu_static_5_3(m: Matrix5x3<$scalar>) -> bool { - let m = m.map(|e| e.0); + fn lu_static_5_3(m in matrix5x3_($scalar)) { let lu = m.lu(); let (p, l, u) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)); } - fn lu_static_square(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn lu_static_square(m in matrix4_($scalar)) { let lu = m.lu(); let (p, l, u) = lu.unpack(); let mut lu = l * u; p.inv_permute_rows(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, lu, epsilon = 1.0e-7)); } - fn lu_solve(n: usize, nb: usize) -> bool { - if n != 0 && nb != 0 { - let n = cmp::min(n, 50); // To avoid slowing down the test too much. - let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + #[test] + fn lu_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) { + let n = cmp::min(n, 50); // To avoid slowing down the test too much. + let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); - let lu = m.clone().lu(); - let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); - let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); + let lu = m.clone().lu(); + let b1 = DVector::<$scalar_type>::new_random(n).map(|e| e.0); + let b2 = DMatrix::<$scalar_type>::new_random(n, nb).map(|e| e.0); - let sol1 = lu.solve(&b1); - let sol2 = lu.solve(&b2); + let sol1 = lu.solve(&b1); + let sol2 = lu.solve(&b2); - return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && - (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) - } - - return true; + prop_assert!(sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)); + prop_assert!(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)); } - fn lu_solve_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn lu_solve_static(m in matrix4_($scalar)) { let lu = m.lu(); - let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); - let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); + let b1 = Vector4::<$scalar_type>::new_random().map(|e| e.0); + let b2 = Matrix4x3::<$scalar_type>::new_random().map(|e| e.0); let sol1 = lu.solve(&b1); let sol2 = lu.solve(&b2); - return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && - (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) + prop_assert!(sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)); + prop_assert!(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)); } - fn lu_inverse(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); - + #[test] + fn lu_inverse(m in dmatrix_($scalar)) { let mut l = m.lower_triangle(); let mut u = m.upper_triangle(); @@ -147,21 +134,20 @@ mod quickcheck_tests { let id1 = &m * &m1; let id2 = &m1 * &m; - return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5); + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } - fn lu_inverse_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn lu_inverse_static(m in matrix4_($scalar)) { let lu = m.lu(); if let Some(m1) = lu.try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } } } @@ -169,6 +155,6 @@ mod quickcheck_tests { } ); - gen_tests!(complex, RandComplex); - gen_tests!(f64, RandScalar); + gen_tests!(complex, complex_f64(), RandComplex); + gen_tests!(f64, PROPTEST_F64, RandScalar); } diff --git a/tests/linalg/qr.rs b/tests/linalg/qr.rs index a6e54af4..f499b030 100644 --- a/tests/linalg/qr.rs +++ b/tests/linalg/qr.rs @@ -1,126 +1,112 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr, $scalar_type: ty) => { mod $module { - use na::{DMatrix, DVector, Matrix3x5, Matrix4, Matrix4x3, Matrix5x3, Vector4}; + use na::{DMatrix, DVector, Matrix4x3, Vector4}; use std::cmp; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn qr(m: DMatrix<$scalar>) -> bool { - let m = m.map(|e| e.0); + proptest! { + #[test] + fn qr(m in dmatrix_($scalar)) { let qr = m.clone().qr(); let q = qr.q(); let r = qr.r(); - println!("m: {}", m); - println!("qr: {}", &q * &r); - - relative_eq!(m, &q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, &q * r, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn qr_static_5_3(m: Matrix5x3<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn qr_static_5_3(m in matrix5x3_($scalar)) { let qr = m.qr(); let q = qr.q(); let r = qr.r(); - relative_eq!(m, q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, q * r, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn qr_static_3_5(m: Matrix3x5<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn qr_static_3_5(m in matrix3x5_($scalar)) { let qr = m.qr(); let q = qr.q(); let r = qr.r(); - relative_eq!(m, q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, q * r, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn qr_static_square(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn qr_static_square(m in matrix4_($scalar)) { let qr = m.qr(); let q = qr.q(); let r = qr.r(); - println!("{}{}{}{}", q, r, q * r, m); - - relative_eq!(m, q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) + prop_assert!(relative_eq!(m, q * r, epsilon = 1.0e-7)); + prop_assert!(q.is_orthogonal(1.0e-7)); } - fn qr_solve(n: usize, nb: usize) -> bool { - if n != 0 && nb != 0 { - let n = cmp::min(n, 50); // To avoid slowing down the test too much. - let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + #[test] + fn qr_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) { + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); - let qr = m.clone().qr(); - let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); - let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); + let qr = m.clone().qr(); + let b1 = DVector::<$scalar_type>::new_random(n).map(|e| e.0); + let b2 = DMatrix::<$scalar_type>::new_random(n, nb).map(|e| e.0); - if qr.is_invertible() { - let sol1 = qr.solve(&b1).unwrap(); - let sol2 = qr.solve(&b2).unwrap(); + if qr.is_invertible() { + let sol1 = qr.solve(&b1).unwrap(); + let sol2 = qr.solve(&b2).unwrap(); - return relative_eq!(&m * sol1, b1, epsilon = 1.0e-6) && - relative_eq!(&m * sol2, b2, epsilon = 1.0e-6) - } + prop_assert!(relative_eq!(&m * sol1, b1, epsilon = 1.0e-6)); + prop_assert!(relative_eq!(&m * sol2, b2, epsilon = 1.0e-6)); } - - return true; } - fn qr_solve_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn qr_solve_static(m in matrix4_($scalar)) { let qr = m.qr(); - let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); - let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); + let b1 = Vector4::<$scalar_type>::new_random().map(|e| e.0); + let b2 = Matrix4x3::<$scalar_type>::new_random().map(|e| e.0); if qr.is_invertible() { let sol1 = qr.solve(&b1).unwrap(); let sol2 = qr.solve(&b2).unwrap(); - relative_eq!(m * sol1, b1, epsilon = 1.0e-6) && - relative_eq!(m * sol2, b2, epsilon = 1.0e-6) - } - else { - false + prop_assert!(relative_eq!(m * sol1, b1, epsilon = 1.0e-6)); + prop_assert!(relative_eq!(m * sol2, b2, epsilon = 1.0e-6)); } } - fn qr_inverse(n: usize) -> bool { + #[test] + fn qr_inverse(n in PROPTEST_MATRIX_DIM) { let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); if let Some(m1) = m.clone().qr().try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } } - fn qr_inverse_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn qr_inverse_static(m in matrix4_($scalar)) { let qr = m.qr(); if let Some(m1) = qr.try_inverse() { let id1 = &m * &m1; let id2 = &m1 * &m; - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true + prop_assert!(id1.is_identity(1.0e-5)); + prop_assert!(id2.is_identity(1.0e-5)); } } } @@ -128,5 +114,5 @@ macro_rules! gen_tests( } ); -gen_tests!(complex, RandComplex); -gen_tests!(f64, RandScalar); +gen_tests!(complex, complex_f64(), RandComplex); +gen_tests!(f64, PROPTEST_F64, RandScalar); diff --git a/tests/linalg/schur.rs b/tests/linalg/schur.rs index 2086ce2d..a4cf5361 100644 --- a/tests/linalg/schur.rs +++ b/tests/linalg/schur.rs @@ -4,8 +4,8 @@ use na::{DMatrix, Matrix3, Matrix4}; #[rustfmt::skip] fn schur_simpl_mat3() { let m = Matrix3::new(-2.0, -4.0, 2.0, - -2.0, 1.0, 2.0, - 4.0, 2.0, 5.0); + -2.0, 1.0, 2.0, + 4.0, 2.0, 5.0); let schur = m.schur(); let (vecs, vals) = schur.unpack(); @@ -13,72 +13,47 @@ fn schur_simpl_mat3() { assert!(relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7)); } -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { +#[cfg(feature = "proptest-support")] +mod proptest_tests { macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr) => { mod $module { - use std::cmp; - use na::{DMatrix, Matrix2, Matrix3, Matrix4}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn schur(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 10)); - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); - + proptest! { + #[test] + fn schur(m in dmatrix_($scalar)) { let (vecs, vals) = m.clone().schur().unpack(); - - if !relative_eq!(&vecs * &vals * vecs.adjoint(), m, epsilon = 1.0e-7) { - println!("{:.5}{:.5}", m, &vecs * &vals * vecs.adjoint()); - } - - relative_eq!(&vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7) + prop_assert!(relative_eq!(&vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7)); } - fn schur_static_mat2(m: Matrix2<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn schur_static_mat2(m in matrix2_($scalar)) { let (vecs, vals) = m.clone().schur().unpack(); - - let ok = relative_eq!(vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7); - if !ok { - println!("Vecs: {:.5} Vals: {:.5}", vecs, vals); - println!("Reconstruction:{}{}", m, &vecs * &vals * vecs.adjoint()); - } - ok + prop_assert!(relative_eq!(vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7)); } - fn schur_static_mat3(m: Matrix3<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn schur_static_mat3(m in matrix3_($scalar)) { let (vecs, vals) = m.clone().schur().unpack(); - - let ok = relative_eq!(vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7); - if !ok { - println!("Vecs: {:.5} Vals: {:.5}", vecs, vals); - println!("{:.5}{:.5}", m, &vecs * &vals * vecs.adjoint()); - } - ok + prop_assert!(relative_eq!(vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7)); } - fn schur_static_mat4(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn schur_static_mat4(m in matrix4_($scalar)) { let (vecs, vals) = m.clone().schur().unpack(); - - let ok = relative_eq!(vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7); - if !ok { - println!("{:.5}{:.5}", m, &vecs * &vals * vecs.adjoint()); - } - - ok + prop_assert!(relative_eq!(vecs * vals * vecs.adjoint(), m, epsilon = 1.0e-7)); } } } } ); - gen_tests!(complex, RandComplex); - gen_tests!(f64, RandScalar); + gen_tests!(complex, complex_f64()); + gen_tests!(f64, PROPTEST_F64); } #[test] diff --git a/tests/linalg/solve.rs b/tests/linalg/solve.rs index 3bd6075e..81cd1c71 100644 --- a/tests/linalg/solve.rs +++ b/tests/linalg/solve.rs @@ -1,11 +1,13 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr) => { mod $module { - use na::{Matrix4, Matrix4x5, ComplexField}; + use na::{Matrix4, ComplexField}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; fn unzero_diagonal(a: &mut Matrix4) { for i in 0..4 { @@ -15,50 +17,50 @@ macro_rules! gen_tests( } } - quickcheck! { - fn solve_lower_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool { - let b = b.map(|e| e.0); - let mut a = a.map(|e| e.0); + proptest! { + #[test] + fn solve_lower_triangular(a in matrix4_($scalar), b in matrix4x5_($scalar)) { + let mut a = a; unzero_diagonal(&mut a); let tri = a.lower_triangle(); let x = a.solve_lower_triangular(&b).unwrap(); - relative_eq!(tri * x, b, epsilon = 1.0e-7) + prop_assert!(relative_eq!(tri * x, b, epsilon = 1.0e-7)) } - fn solve_upper_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool { - let b = b.map(|e| e.0); - let mut a = a.map(|e| e.0); + #[test] + fn solve_upper_triangular(a in matrix4_($scalar), b in matrix4x5_($scalar)) { + let mut a = a; unzero_diagonal(&mut a); let tri = a.upper_triangle(); let x = a.solve_upper_triangular(&b).unwrap(); - relative_eq!(tri * x, b, epsilon = 1.0e-7) + prop_assert!(relative_eq!(tri * x, b, epsilon = 1.0e-7)) } - fn tr_solve_lower_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool { - let b = b.map(|e| e.0); - let mut a = a.map(|e| e.0); + #[test] + fn tr_solve_lower_triangular(a in matrix4_($scalar), b in matrix4x5_($scalar)) { + let mut a = a; unzero_diagonal(&mut a); let tri = a.lower_triangle(); let x = a.tr_solve_lower_triangular(&b).unwrap(); - relative_eq!(tri.transpose() * x, b, epsilon = 1.0e-7) + prop_assert!(relative_eq!(tri.transpose() * x, b, epsilon = 1.0e-7)) } - fn tr_solve_upper_triangular(a: Matrix4<$scalar>, b: Matrix4x5<$scalar>) -> bool { - let b = b.map(|e| e.0); - let mut a = a.map(|e| e.0); + #[test] + fn tr_solve_upper_triangular(a in matrix4_($scalar), b in matrix4x5_($scalar)) { + let mut a = a; unzero_diagonal(&mut a); let tri = a.upper_triangle(); let x = a.tr_solve_upper_triangular(&b).unwrap(); - relative_eq!(tri.transpose() * x, b, epsilon = 1.0e-7) + prop_assert!(relative_eq!(tri.transpose() * x, b, epsilon = 1.0e-7)) } } } } ); -gen_tests!(complex, RandComplex); -gen_tests!(f64, RandScalar); +gen_tests!(complex, complex_f64()); +gen_tests!(f64, PROPTEST_F64); diff --git a/tests/linalg/svd.rs b/tests/linalg/svd.rs index cd44b61d..80aa6a20 100644 --- a/tests/linalg/svd.rs +++ b/tests/linalg/svd.rs @@ -1,162 +1,143 @@ use na::{DMatrix, Matrix6}; -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { +#[cfg(feature = "proptest-support")] +mod proptest_tests { macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr, $scalar_type: ty) => { mod $module { use na::{ - DMatrix, DVector, Matrix2, Matrix2x5, Matrix3, Matrix3x5, Matrix4, Matrix5x2, Matrix5x3, + DMatrix, DVector, Matrix2, Matrix3, Matrix4, ComplexField }; use std::cmp; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn svd(m: DMatrix<$scalar>) -> bool { - let m = m.map(|e| e.0); - if m.len() > 0 { - let svd = m.clone().svd(true, true); - let recomp_m = svd.clone().recompose().unwrap(); - let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = DMatrix::from_diagonal(&s.map(|e| ComplexField::from_real(e))); + proptest! { + #[test] + fn svd(m in dmatrix_($scalar)) { + let svd = m.clone().svd(true, true); + let recomp_m = svd.clone().recompose().unwrap(); + let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); + let ds = DMatrix::from_diagonal(&s.map(|e| ComplexField::from_real(e))); - s.iter().all(|e| *e >= 0.0) && - relative_eq!(&u * ds * &v_t, recomp_m, epsilon = 1.0e-5) && - relative_eq!(m, recomp_m, epsilon = 1.0e-5) - } - else { - true - } + prop_assert!(s.iter().all(|e| *e >= 0.0)); + prop_assert!(relative_eq!(&u * ds * &v_t, recomp_m, epsilon = 1.0e-5)); + prop_assert!(relative_eq!(m, recomp_m, epsilon = 1.0e-5)); } - fn svd_static_5_3(m: Matrix5x3<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn svd_static_5_3(m in matrix5x3_($scalar)) { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let ds = Matrix3::from_diagonal(&s.map(|e| ComplexField::from_real(e))); - s.iter().all(|e| *e >= 0.0) && - relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) && - u.is_orthogonal(1.0e-5) && - v_t.is_orthogonal(1.0e-5) + prop_assert!(s.iter().all(|e| *e >= 0.0)); + prop_assert!(relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5)); + prop_assert!(u.is_orthogonal(1.0e-5)); + prop_assert!(v_t.is_orthogonal(1.0e-5)); } - fn svd_static_5_2(m: Matrix5x2<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn svd_static_5_2(m in matrix5x2_($scalar)) { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e))); - s.iter().all(|e| *e >= 0.0) && - relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) && - u.is_orthogonal(1.0e-5) && - v_t.is_orthogonal(1.0e-5) + prop_assert!(s.iter().all(|e| *e >= 0.0)); + prop_assert!(relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5)); + prop_assert!(u.is_orthogonal(1.0e-5)); + prop_assert!(v_t.is_orthogonal(1.0e-5)); } - fn svd_static_3_5(m: Matrix3x5<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn svd_static_3_5(m in matrix3x5_($scalar)) { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let ds = Matrix3::from_diagonal(&s.map(|e| ComplexField::from_real(e))); - s.iter().all(|e| *e >= 0.0) && - relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) + prop_assert!(s.iter().all(|e| *e >= 0.0)); + prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)); } - fn svd_static_2_5(m: Matrix2x5<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn svd_static_2_5(m in matrix2x5_($scalar)) { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e))); - s.iter().all(|e| *e >= 0.0) && - relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) + prop_assert!(s.iter().all(|e| *e >= 0.0)); + prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)); } - fn svd_static_square(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn svd_static_square(m in matrix4_($scalar)) { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let ds = Matrix4::from_diagonal(&s.map(|e| ComplexField::from_real(e))); - s.iter().all(|e| *e >= 0.0) && - relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) && - u.is_orthogonal(1.0e-5) && - v_t.is_orthogonal(1.0e-5) + prop_assert!(s.iter().all(|e| *e >= 0.0)); + prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)); + prop_assert!(u.is_orthogonal(1.0e-5)); + prop_assert!(v_t.is_orthogonal(1.0e-5)); } - fn svd_static_square_2x2(m: Matrix2<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn svd_static_square_2x2(m in matrix2_($scalar)) { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let ds = Matrix2::from_diagonal(&s.map(|e| ComplexField::from_real(e))); - s.iter().all(|e| *e >= 0.0) && - relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) && - u.is_orthogonal(1.0e-5) && - v_t.is_orthogonal(1.0e-5) + prop_assert!(s.iter().all(|e| *e >= 0.0)); + prop_assert!(relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5)); + prop_assert!(u.is_orthogonal(1.0e-5)); + prop_assert!(v_t.is_orthogonal(1.0e-5)); } - fn svd_pseudo_inverse(m: DMatrix<$scalar>) -> bool { - let m = m.map(|e| e.0); + #[test] + fn svd_pseudo_inverse(m in dmatrix_($scalar)) { + let svd = m.clone().svd(true, true); + let pinv = svd.pseudo_inverse(1.0e-10).unwrap(); - if m.len() > 0 { - let svd = m.clone().svd(true, true); - let pinv = svd.pseudo_inverse(1.0e-10).unwrap(); - - if m.nrows() > m.ncols() { - (pinv * m).is_identity(1.0e-5) - } - else { - (m * pinv).is_identity(1.0e-5) - } - } - else { - true + if m.nrows() > m.ncols() { + prop_assert!((pinv * m).is_identity(1.0e-5)) + } else { + prop_assert!((m * pinv).is_identity(1.0e-5)) } } - fn svd_solve(n: usize, nb: usize) -> bool { + #[test] + fn svd_solve(n in PROPTEST_MATRIX_DIM, nb in PROPTEST_MATRIX_DIM) { let n = cmp::max(1, cmp::min(n, 10)); let nb = cmp::min(nb, 10); - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + let m = DMatrix::<$scalar_type>::new_random(n, n).map(|e| e.0); let svd = m.clone().svd(true, true); if svd.rank(1.0e-7) == n { - let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); - let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); + let b1 = DVector::<$scalar_type>::new_random(n).map(|e| e.0); + let b2 = DMatrix::<$scalar_type>::new_random(n, nb).map(|e| e.0); let sol1 = svd.solve(&b1, 1.0e-7).unwrap(); let sol2 = svd.solve(&b2, 1.0e-7).unwrap(); let recomp = svd.recompose().unwrap(); - if !relative_eq!(m, recomp, epsilon = 1.0e-6) { - println!("{}{}", m, recomp); - } - if !relative_eq!(&m * &sol1, b1, epsilon = 1.0e-6) { - println!("Problem 1: {:.6}{:.6}", b1, &m * sol1); - return false; - } - if !relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6) { - println!("Problem 2: {:.6}{:.6}", b2, &m * sol2); - return false; - } + prop_assert!(relative_eq!(m, recomp, epsilon = 1.0e-6)); + prop_assert!(relative_eq!(&m * &sol1, b1, epsilon = 1.0e-6)); + prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6)); } - - true } } } } ); - gen_tests!(complex, RandComplex); - gen_tests!(f64, RandScalar); + gen_tests!(complex, complex_f64(), RandComplex); + gen_tests!(f64, PROPTEST_F64, RandScalar); } // Test proposed on the issue #176 of rulinalg. @@ -303,31 +284,31 @@ fn svd_identity() { #[rustfmt::skip] fn svd_with_delimited_subproblem() { let mut m = DMatrix::::from_element(10, 10, 0.0); - m[(0,0)] = 1.0; m[(0,1)] = 2.0; - m[(1,1)] = 0.0; m[(1,2)] = 3.0; - m[(2,2)] = 4.0; m[(2,3)] = 5.0; - m[(3,3)] = 6.0; m[(3,4)] = 0.0; - m[(4,4)] = 8.0; m[(3,5)] = 9.0; - m[(5,5)] = 10.0; m[(3,6)] = 11.0; - m[(6,6)] = 12.0; m[(3,7)] = 12.0; - m[(7,7)] = 14.0; m[(3,8)] = 13.0; - m[(8,8)] = 16.0; m[(3,9)] = 17.0; - m[(9,9)] = 18.0; + m[(0, 0)] = 1.0; m[(0, 1)] = 2.0; + m[(1, 1)] = 0.0; m[(1, 2)] = 3.0; + m[(2, 2)] = 4.0; m[(2, 3)] = 5.0; + m[(3, 3)] = 6.0; m[(3, 4)] = 0.0; + m[(4, 4)] = 8.0; m[(3, 5)] = 9.0; + m[(5, 5)] = 10.0; m[(3, 6)] = 11.0; + m[(6, 6)] = 12.0; m[(3, 7)] = 12.0; + m[(7, 7)] = 14.0; m[(3, 8)] = 13.0; + m[(8, 8)] = 16.0; m[(3, 9)] = 17.0; + m[(9, 9)] = 18.0; let svd = m.clone().svd(true, true); assert_relative_eq!(m, svd.recompose().unwrap(), epsilon = 1.0e-7); // Rectangular versions. let mut m = DMatrix::::from_element(15, 10, 0.0); - m[(0,0)] = 1.0; m[(0,1)] = 2.0; - m[(1,1)] = 0.0; m[(1,2)] = 3.0; - m[(2,2)] = 4.0; m[(2,3)] = 5.0; - m[(3,3)] = 6.0; m[(3,4)] = 0.0; - m[(4,4)] = 8.0; m[(3,5)] = 9.0; - m[(5,5)] = 10.0; m[(3,6)] = 11.0; - m[(6,6)] = 12.0; m[(3,7)] = 12.0; - m[(7,7)] = 14.0; m[(3,8)] = 13.0; - m[(8,8)] = 16.0; m[(3,9)] = 17.0; - m[(9,9)] = 18.0; + m[(0, 0)] = 1.0; m[(0, 1)] = 2.0; + m[(1, 1)] = 0.0; m[(1, 2)] = 3.0; + m[(2, 2)] = 4.0; m[(2, 3)] = 5.0; + m[(3, 3)] = 6.0; m[(3, 4)] = 0.0; + m[(4, 4)] = 8.0; m[(3, 5)] = 9.0; + m[(5, 5)] = 10.0; m[(3, 6)] = 11.0; + m[(6, 6)] = 12.0; m[(3, 7)] = 12.0; + m[(7, 7)] = 14.0; m[(3, 8)] = 13.0; + m[(8, 8)] = 16.0; m[(3, 9)] = 17.0; + m[(9, 9)] = 18.0; let svd = m.clone().svd(true, true); assert_relative_eq!(m, svd.recompose().unwrap(), epsilon = 1.0e-7); diff --git a/tests/linalg/tridiagonal.rs b/tests/linalg/tridiagonal.rs index b787fd12..3f06fe8e 100644 --- a/tests/linalg/tridiagonal.rs +++ b/tests/linalg/tridiagonal.rs @@ -1,54 +1,56 @@ -#![cfg(feature = "arbitrary")] +#![cfg(feature = "proptest-support")] macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr) => { mod $module { - use std::cmp; - - use na::{DMatrix, Matrix2, Matrix4}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn symm_tridiagonal(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); + proptest! { + #[test] + fn symm_tridiagonal(m in dmatrix_($scalar)) { + let m = &m * m.adjoint(); let tri = m.clone().symmetric_tridiagonalize(); let recomp = tri.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7)); } - fn symm_tridiagonal_singular(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 4)); - let mut m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); + #[test] + fn symm_tridiagonal_singular(m in dmatrix_($scalar)) { + let mut m = &m * m.adjoint(); + let n = m.nrows(); m.row_mut(n / 2).fill(na::zero()); m.column_mut(n / 2).fill(na::zero()); let tri = m.clone().symmetric_tridiagonalize(); let recomp = tri.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7)); } - fn symm_tridiagonal_static_square(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0).hermitian_part(); + #[test] + fn symm_tridiagonal_static_square(m in matrix4_($scalar)) { + let m = m.hermitian_part(); let tri = m.symmetric_tridiagonalize(); let recomp = tri.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7)); } - fn symm_tridiagonal_static_square_2x2(m: Matrix2<$scalar>) -> bool { - let m = m.map(|e| e.0).hermitian_part(); + #[test] + fn symm_tridiagonal_static_square_2x2(m in matrix2_($scalar)) { + let m = m.hermitian_part(); let tri = m.symmetric_tridiagonalize(); let recomp = tri.recompose(); - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) + prop_assert!(relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7)); } } } } ); -gen_tests!(complex, RandComplex); -gen_tests!(f64, RandScalar); +gen_tests!(complex, complex_f64()); +gen_tests!(f64, PROPTEST_F64); diff --git a/tests/linalg/udu.rs b/tests/linalg/udu.rs index 006cc95f..a7bda1a4 100644 --- a/tests/linalg/udu.rs +++ b/tests/linalg/udu.rs @@ -8,7 +8,7 @@ fn udu_simple() { -1.0, 2.0, -1.0, 0.0, -1.0, 2.0); - let udu = m.udu(); + let udu = m.udu().unwrap(); // Rebuild let p = udu.u * udu.d_matrix() * udu.u.transpose(); @@ -23,50 +23,54 @@ fn udu_non_sym_panic() { let m = Matrix3::new( 2.0, -1.0, 0.0, 1.0, -2.0, 3.0, - -2.0, 1.0, 0.0); + -2.0, 1.0, 0.3); - let udu = m.udu(); + let udu = m.udu().unwrap(); // Rebuild let p = udu.u * udu.d_matrix() * udu.u.transpose(); assert!(relative_eq!(m, p, epsilon = 3.0e-16)); } -#[cfg(feature = "arbitrary")] -mod quickcheck_tests { +#[cfg(feature = "proptest-support")] +mod proptest_tests { #[allow(unused_imports)] use crate::core::helper::{RandComplex, RandScalar}; macro_rules! gen_tests( - ($module: ident, $scalar: ty) => { + ($module: ident, $scalar: expr) => { mod $module { - use na::{DMatrix, Matrix4}; #[allow(unused_imports)] use crate::core::helper::{RandScalar, RandComplex}; + use crate::proptest::*; + use proptest::{prop_assert, proptest}; - quickcheck! { - fn udu(n: usize) -> bool { - let n = std::cmp::max(1, std::cmp::min(n, 10)); - let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0).hermitian_part(); + proptest! { + #[test] + fn udu(m in dmatrix_($scalar)) { + let m = &m * m.adjoint(); - let udu = m.clone().udu(); - let p = &udu.u * &udu.d_matrix() * &udu.u.transpose(); + if let Some(udu) = m.clone().udu() { + let p = &udu.u * &udu.d_matrix() * &udu.u.transpose(); + println!("m: {}, p: {}", m, p); - relative_eq!(m, p, epsilon = 1.0e-7) + prop_assert!(relative_eq!(m, p, epsilon = 1.0e-7)); + } } - fn udu_static(m: Matrix4<$scalar>) -> bool { - let m = m.map(|e| e.0).hermitian_part(); + #[test] + fn udu_static(m in matrix4_($scalar)) { + let m = m.hermitian_part(); - let udu = m.udu(); - let p = udu.u * udu.d_matrix() * udu.u.transpose(); - - relative_eq!(m, p, epsilon = 1.0e-7) + if let Some(udu) = m.udu() { + let p = udu.u * udu.d_matrix() * udu.u.transpose(); + prop_assert!(relative_eq!(m, p, epsilon = 1.0e-7)); + } } } } } ); - gen_tests!(f64, RandScalar); + gen_tests!(f64, PROPTEST_F64); } diff --git a/tests/proptest/mod.rs b/tests/proptest/mod.rs index fbe14ee7..26bb6129 100644 --- a/tests/proptest/mod.rs +++ b/tests/proptest/mod.rs @@ -1,10 +1,161 @@ //! Tests for proptest-related functionality. +use nalgebra::allocator::Allocator; use nalgebra::base::dimension::*; -use nalgebra::proptest::{matrix, DimRange, MatrixStrategy}; -use nalgebra::{DMatrix, DVector, Dim, Matrix3, MatrixMN, Vector3}; +use nalgebra::proptest::{DimRange, MatrixStrategy}; +use nalgebra::{ + DMatrix, DVector, DefaultAllocator, Dim, DualQuaternion, Isometry2, Isometry3, Matrix3, + MatrixMN, Point2, Point3, Quaternion, Rotation2, Rotation3, Scalar, Similarity3, Translation2, + Translation3, UnitComplex, UnitDualQuaternion, UnitQuaternion, Vector3, U2, U3, U4, U7, U8, +}; +use num_complex::Complex; use proptest::prelude::*; -use proptest::strategy::ValueTree; +use proptest::strategy::{Strategy, ValueTree}; use proptest::test_runner::TestRunner; +use std::ops::RangeInclusive; + +pub const PROPTEST_MATRIX_DIM: RangeInclusive = 1..=20; +pub const PROPTEST_F64: RangeInclusive = -100.0..=100.0; + +pub use nalgebra::proptest::{matrix, vector}; + +pub fn point2() -> impl Strategy> { + vector2().prop_map(|v| Point2::from(v)) +} + +pub fn point3() -> impl Strategy> { + vector3().prop_map(|v| Point3::from(v)) +} + +pub fn translation2() -> impl Strategy> { + vector2().prop_map(|v| Translation2::from(v)) +} + +pub fn translation3() -> impl Strategy> { + vector3().prop_map(|v| Translation3::from(v)) +} + +pub fn rotation2() -> impl Strategy> { + PROPTEST_F64.prop_map(|v| Rotation2::new(v)) +} + +pub fn rotation3() -> impl Strategy> { + vector3().prop_map(|v| Rotation3::new(v)) +} + +pub fn unit_complex() -> impl Strategy> { + PROPTEST_F64.prop_map(|v| UnitComplex::new(v)) +} + +pub fn isometry2() -> impl Strategy> { + vector3().prop_map(|v| Isometry2::new(v.xy(), v.z)) +} + +pub fn isometry3() -> impl Strategy> { + vector6().prop_map(|v| Isometry3::new(v.xyz(), Vector3::new(v.w, v.a, v.b))) +} + +// pub fn similarity2() -> impl Strategy> { +// vector4().prop_map(|v| Similarity2::new(v.xy(), v.z, v.w)) +// } + +pub fn similarity3() -> impl Strategy> { + vector(PROPTEST_F64, U7) + .prop_map(|v| Similarity3::new(v.xyz(), Vector3::new(v[3], v[4], v[5]), v[6])) +} + +pub fn unit_dual_quaternion() -> impl Strategy> { + isometry3().prop_map(|iso| UnitDualQuaternion::from_isometry(&iso)) +} + +pub fn dual_quaternion() -> impl Strategy> { + vector(PROPTEST_F64, U8).prop_map(|v| { + DualQuaternion::from_real_and_dual( + Quaternion::new(v[0], v[1], v[2], v[3]), + Quaternion::new(v[4], v[5], v[6], v[7]), + ) + }) +} + +pub fn quaternion() -> impl Strategy> { + vector4().prop_map(|v| Quaternion::from(v)) +} + +pub fn unit_quaternion() -> impl Strategy> { + vector3().prop_map(|v| UnitQuaternion::new(v)) +} + +pub fn complex_f64() -> impl Strategy> + Clone { + vector(PROPTEST_F64, U2).prop_map(|v| Complex::new(v.x, v.y)) +} + +pub fn dmatrix() -> impl Strategy> { + matrix(PROPTEST_F64, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM) +} + +pub fn dvector() -> impl Strategy> { + vector(PROPTEST_F64, PROPTEST_MATRIX_DIM) +} + +pub fn dmatrix_( + scalar_strategy: ScalarStrategy, +) -> impl Strategy> +where + ScalarStrategy: Strategy + Clone + 'static, + ScalarStrategy::Value: Scalar, + DefaultAllocator: Allocator, +{ + matrix(scalar_strategy, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM) +} + +// pub fn dvector_(range: RangeInclusive) -> impl Strategy> +// where +// RangeInclusive: Strategy, +// T: Scalar + PartialEq + Copy, +// DefaultAllocator: Allocator, +// { +// vector(range, PROPTEST_MATRIX_DIM) +// } + +macro_rules! define_strategies( + ($($strategy_: ident $strategy: ident<$nrows: ident, $ncols: ident>),*) => {$( + #[allow(dead_code)] + pub fn $strategy() -> impl Strategy> { + matrix(PROPTEST_F64, $nrows, $ncols) + } + + #[allow(dead_code)] + pub fn $strategy_(scalar_strategy: ScalarStrategy) -> impl Strategy> + where + ScalarStrategy: Strategy + Clone + 'static, + ScalarStrategy::Value: Scalar, + DefaultAllocator: Allocator { + matrix(scalar_strategy, $nrows, $ncols) + } + )*} +); + +define_strategies!( + matrix1_ matrix1, + matrix2_ matrix2, + matrix3_ matrix3, + matrix4_ matrix4, + matrix5_ matrix5, + matrix6_ matrix6, + + matrix5x2_ matrix5x2, + matrix2x5_ matrix2x5, + matrix5x3_ matrix5x3, + matrix3x5_ matrix3x5, + matrix5x4_ matrix5x4, + matrix4x5_ matrix4x5, + + vector1_ vector1, + vector2_ vector2, + vector3_ vector3, + vector4_ vector4, + vector5_ vector5, + vector6_ vector6 +); /// Generate a proptest that tests that all matrices generated with the /// provided rows and columns conform to the constraints defined by the diff --git a/tests/sparse/cs_conversion.rs b/tests/sparse/cs_conversion.rs index f08fe758..895650dc 100644 --- a/tests/sparse/cs_conversion.rs +++ b/tests/sparse/cs_conversion.rs @@ -43,7 +43,6 @@ fn cs_matrix_from_triplet() { ); let cs_mat = CsMatrix::from_triplet(4, 5, &irows, &icols, &vals); - println!("Mat from triplet: {:?}", cs_mat); assert!(cs_mat.is_sorted()); assert_eq!(cs_mat, cs_expected); @@ -62,7 +61,6 @@ fn cs_matrix_from_triplet() { } let cs_mat = CsMatrix::from_triplet(4, 5, &irows, &icols, &vals); - println!("Mat from triplet: {:?}", cs_mat); assert!(cs_mat.is_sorted()); assert_eq!(cs_mat, cs_expected); @@ -80,7 +78,6 @@ fn cs_matrix_from_triplet() { vals.append(&mut va); let cs_mat = CsMatrix::from_triplet(4, 5, &irows, &icols, &vals); - println!("Mat from triplet: {:?}", cs_mat); assert!(cs_mat.is_sorted()); assert_eq!(cs_mat, cs_expected * 2.0); diff --git a/tests/sparse/cs_matrix_market.rs b/tests/sparse/cs_matrix_market.rs index 12414b37..7c0cee43 100644 --- a/tests/sparse/cs_matrix_market.rs +++ b/tests/sparse/cs_matrix_market.rs @@ -41,7 +41,6 @@ fn cs_matrix_market() { "#; let cs_mat = io::cs_matrix_from_matrix_market_str(file_str).unwrap(); - println!("CS mat: {:?}", cs_mat); let mat: DMatrix<_> = cs_mat.into(); let expected = DMatrix::from_row_slice(5, 5, &[ 1.0, 0.0, 0.0, 6.0, 0.0,