forked from M-Labs/nalgebra
Minimal post-processing and fix to documentation
This commit is contained in:
parent
73543b2121
commit
6a22e74c00
@ -180,25 +180,44 @@ where
|
|||||||
}
|
}
|
||||||
|
|
||||||
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
|
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
|
||||||
/// Outputs two matrices, the first one containing the left eigenvectors of the generalized eigenvalues
|
/// Outputs two matrices.
|
||||||
/// as columns and the second matrix contains the right eigenvectors of the generalized eigenvalues
|
/// The first output matix contains the left eigenvectors of the generalized eigenvalues
|
||||||
/// as columns
|
/// as columns.
|
||||||
|
/// The second matrix contains the right eigenvectors of the generalized eigenvalues
|
||||||
|
/// as columns.
|
||||||
///
|
///
|
||||||
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
||||||
/// of (A,B) satisfies
|
/// of (A,B) satisfies
|
||||||
///
|
///
|
||||||
/// A * v(j) = lambda(j) * B * v(j).
|
/// A * v(j) = lambda(j) * B * v(j)
|
||||||
///
|
///
|
||||||
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
||||||
/// of (A,B) satisfies
|
/// of (A,B) satisfies
|
||||||
///
|
///
|
||||||
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
/// u(j)**H * A = lambda(j) * u(j)**H * B
|
||||||
/// where u(j)**H is the conjugate-transpose of u(j).
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
||||||
|
///
|
||||||
|
/// How the eigenvectors are build up:
|
||||||
|
///
|
||||||
|
/// Since the input entries are all real, the generalized eigenvalues if complex come in pairs
|
||||||
|
/// as a consequence of <https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem>
|
||||||
|
/// The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated
|
||||||
|
/// eigenvectors from the real matrix output via the following procedure
|
||||||
|
///
|
||||||
|
/// (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns,
|
||||||
|
/// VR stands for the lapack real matrix output containing the right eigenvectors as columns)
|
||||||
|
///
|
||||||
|
/// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
|
||||||
|
/// then
|
||||||
|
///
|
||||||
|
/// u(j) = VL(:,j)+i*VL(:,j+1)
|
||||||
|
/// u(j+1) = VL(:,j)-i*VL(:,j+1)
|
||||||
|
///
|
||||||
|
/// and
|
||||||
|
///
|
||||||
|
/// u(j) = VR(:,j)+i*VR(:,j+1)
|
||||||
|
/// v(j+1) = VR(:,j)-i*VR(:,j+1).
|
||||||
///
|
///
|
||||||
/// What is going on below?
|
|
||||||
/// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
|
|
||||||
/// then u(j) = VSL(:,j)+i*VSL(:,j+1) and u(j+1) = VSL(:,j)-i*VSL(:,j+1).
|
|
||||||
/// and then v(j) = VSR(:,j)+i*VSR(:,j+1) and v(j+1) = VSR(:,j)-i*VSR(:,j+1).
|
|
||||||
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
|
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
|
||||||
where
|
where
|
||||||
DefaultAllocator:
|
DefaultAllocator:
|
||||||
@ -216,18 +235,14 @@ where
|
|||||||
.clone()
|
.clone()
|
||||||
.map(|x| Complex::new(x, T::RealField::zero()));
|
.map(|x| Complex::new(x, T::RealField::zero()));
|
||||||
|
|
||||||
let eigenvalues = &self.eigenvalues();
|
let eigenvalues = &self.raw_eigenvalues();
|
||||||
|
|
||||||
let mut c = 0;
|
let mut c = 0;
|
||||||
|
|
||||||
let epsilon = T::RealField::default_epsilon();
|
let epsilon = T::RealField::default_epsilon();
|
||||||
|
|
||||||
while c < n {
|
while c < n {
|
||||||
if eigenvalues[c].im.abs() > epsilon && c + 1 < n && {
|
if eigenvalues[c].0.im.abs() > epsilon && c + 1 < n {
|
||||||
let e_conj = eigenvalues[c].conj();
|
|
||||||
let e = eigenvalues[c + 1];
|
|
||||||
(&e_conj.re).ulps_eq(&e.re, epsilon, 6) && (&e_conj.im).ulps_eq(&e.im, epsilon, 6)
|
|
||||||
} {
|
|
||||||
// taking care of the left eigenvector matrix
|
// taking care of the left eigenvector matrix
|
||||||
l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| {
|
l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| {
|
||||||
*r = Complex::new(r.re.clone(), i.clone());
|
*r = Complex::new(r.re.clone(), i.clone());
|
||||||
@ -253,32 +268,7 @@ where
|
|||||||
(l, r)
|
(l, r)
|
||||||
}
|
}
|
||||||
|
|
||||||
// only used for internal calculation for assembling eigenvectors based on realness of
|
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta)
|
||||||
// eigenvalues and complex-conjugate checks of subsequent non-real eigenvalues
|
|
||||||
fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
|
||||||
where
|
|
||||||
DefaultAllocator: Allocator<Complex<T>, D>,
|
|
||||||
{
|
|
||||||
let mut out = Matrix::zeros_generic(self.vsl.shape_generic().0, Const::<1>);
|
|
||||||
|
|
||||||
let epsilon = T::RealField::default_epsilon();
|
|
||||||
|
|
||||||
for i in 0..out.len() {
|
|
||||||
out[i] = if self.beta[i].clone().abs() < epsilon
|
|
||||||
|| (self.alphai[i].clone().abs() < epsilon
|
|
||||||
&& self.alphar[i].clone().abs() < epsilon)
|
|
||||||
{
|
|
||||||
Complex::zero()
|
|
||||||
} else {
|
|
||||||
Complex::new(self.alphar[i].clone(), self.alphai[i].clone())
|
|
||||||
* (Complex::new(self.beta[i].clone(), T::RealField::zero()).inv())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
out
|
|
||||||
}
|
|
||||||
|
|
||||||
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta)
|
|
||||||
/// straight from LAPACK
|
/// straight from LAPACK
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
|
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
|
||||||
|
Loading…
Reference in New Issue
Block a user