diff --git a/src/base/norm.rs b/src/base/norm.rs index 150ca341..d0f593ce 100644 --- a/src/base/norm.rs +++ b/src/base/norm.rs @@ -1,3 +1,6 @@ +#[cfg(all(feature = "alloc", not(feature = "std")))] +use alloc::vec::Vec; + use num::Zero; use std::ops::Neg; diff --git a/tests/core/abomonation.rs b/tests/core/abomonation.rs index 01760e14..5148db81 100644 --- a/tests/core/abomonation.rs +++ b/tests/core/abomonation.rs @@ -32,8 +32,6 @@ test_abomonation! { } fn assert_encode_and_decode(original_data: T) { - use std::mem::drop; - // Hold on to a clone for later comparison let data = original_data.clone(); diff --git a/tests/core/matrix.rs b/tests/core/matrix.rs index 6fad5e8c..9e25db58 100644 --- a/tests/core/matrix.rs +++ b/tests/core/matrix.rs @@ -1,15 +1,12 @@ use num::{One, Zero}; use std::cmp::Ordering; -use na::dimension::{U15, U8, U2, U4}; +use na::dimension::{U15, U2, U4, U8}; use na::{ self, DMatrix, DVector, Matrix2, Matrix2x3, Matrix2x4, Matrix3, Matrix3x2, Matrix3x4, Matrix4, - Matrix4x3, Matrix4x5, Matrix5, Matrix6, MatrixMN, RowVector3, RowVector4, RowVector5, - Vector1, Vector2, Vector3, Vector4, Vector5, Vector6, + Matrix4x3, Matrix4x5, Matrix5, Matrix6, MatrixMN, RowVector3, RowVector4, RowVector5, Vector1, + Vector2, Vector3, Vector4, Vector5, Vector6, }; -use typenum::{UInt, UTerm}; -use serde_json::error::Category::Data; -use typenum::bit::{B0, B1}; #[test] fn iter() { @@ -1025,7 +1022,9 @@ mod finite_dim_inner_space_tests { * */ #[cfg(feature = "arbitrary")] - fn is_subspace_basis + Display>(vs: &[T]) -> bool { + fn is_subspace_basis + Display>( + vs: &[T], + ) -> bool { for i in 0..vs.len() { // Basis elements must be normalized. if !relative_eq!(vs[i].norm(), 1.0, epsilon = 1.0e-7) { @@ -1066,7 +1065,7 @@ fn partial_eq_different_types() { let static_mat = Matrix2x4::new(1, 2, 3, 4, 5, 6, 7, 8); let mut typenum_static_mat = MatrixMN::::zeros(); - let mut slice = typenum_static_mat.slice_mut((0,0), (2, 4)); + let mut slice = typenum_static_mat.slice_mut((0, 0), (2, 4)); slice += static_mat; let fslice_of_dmat = dynamic_mat.fixed_slice::(0, 0); @@ -1107,5 +1106,4 @@ fn partial_eq_different_types() { // TODO - implement those comparisons // assert_ne!(static_mat, typenum_static_mat); //assert_ne!(typenum_static_mat, static_mat); - } diff --git a/tests/geometry/quaternion.rs b/tests/geometry/quaternion.rs index 4dd3da62..fdb88250 100644 --- a/tests/geometry/quaternion.rs +++ b/tests/geometry/quaternion.rs @@ -1,5 +1,6 @@ #![cfg(feature = "arbitrary")] #![allow(non_snake_case)] +#![cfg_attr(rustfmt, rustfmt_skip)] use na::{Point3, Quaternion, Rotation3, Unit, UnitQuaternion, Vector3}; @@ -10,15 +11,15 @@ quickcheck!( * */ fn from_euler_angles(r: f64, p: f64, y: f64) -> bool { - let roll = UnitQuaternion::from_euler_angles(r, 0.0, 0.0); + let roll = UnitQuaternion::from_euler_angles(r, 0.0, 0.0); let pitch = UnitQuaternion::from_euler_angles(0.0, p, 0.0); - let yaw = UnitQuaternion::from_euler_angles(0.0, 0.0, y); + let yaw = UnitQuaternion::from_euler_angles(0.0, 0.0, y); let rpy = UnitQuaternion::from_euler_angles(r, p, y); - let rroll = roll.to_rotation_matrix(); + let rroll = roll.to_rotation_matrix(); let rpitch = pitch.to_rotation_matrix(); - let ryaw = yaw.to_rotation_matrix(); + let ryaw = yaw.to_rotation_matrix(); relative_eq!(rroll[(0, 0)], 1.0, epsilon = 1.0e-7) && // rotation wrt. x axis. relative_eq!(rpitch[(1, 1)], 1.0, epsilon = 1.0e-7) && // rotation wrt. y axis. @@ -29,22 +30,24 @@ quickcheck!( fn euler_angles(r: f64, p: f64, y: f64) -> bool { let rpy = UnitQuaternion::from_euler_angles(r, p, y); let (roll, pitch, yaw) = rpy.euler_angles(); - relative_eq!(UnitQuaternion::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7) + relative_eq!( + UnitQuaternion::from_euler_angles(roll, pitch, yaw), + rpy, + epsilon = 1.0e-7 + ) } - /* * * From/to rotation matrix. * */ fn unit_quaternion_rotation_conversion(q: UnitQuaternion) -> bool { - let r = q.to_rotation_matrix(); + let r = q.to_rotation_matrix(); let qq = UnitQuaternion::from_rotation_matrix(&r); let rr = qq.to_rotation_matrix(); - relative_eq!(q, qq, epsilon = 1.0e-7) && - relative_eq!(r, rr, epsilon = 1.0e-7) + relative_eq!(q, qq, epsilon = 1.0e-7) && relative_eq!(r, rr, epsilon = 1.0e-7) } /* @@ -52,23 +55,27 @@ quickcheck!( * Point/Vector transformation. * */ - fn unit_quaternion_transformation(q: UnitQuaternion, v: Vector3, p: Point3) -> bool { + + fn unit_quaternion_transformation( + q: UnitQuaternion, + v: Vector3, + p: Point3 + ) -> bool + { let r = q.to_rotation_matrix(); let rv = r * v; let rp = r * p; - relative_eq!( q * v, rv, epsilon = 1.0e-7) && - relative_eq!( q * &v, rv, epsilon = 1.0e-7) && - relative_eq!(&q * v, rv, epsilon = 1.0e-7) && - relative_eq!(&q * &v, rv, epsilon = 1.0e-7) && - - relative_eq!( q * p, rp, epsilon = 1.0e-7) && - relative_eq!( q * &p, rp, epsilon = 1.0e-7) && - relative_eq!(&q * p, rp, epsilon = 1.0e-7) && - relative_eq!(&q * &p, rp, epsilon = 1.0e-7) + relative_eq!(q * v, rv, epsilon = 1.0e-7) + && relative_eq!(q * &v, rv, epsilon = 1.0e-7) + && relative_eq!(&q * v, rv, epsilon = 1.0e-7) + && relative_eq!(&q * &v, rv, epsilon = 1.0e-7) + && relative_eq!(q * p, rp, epsilon = 1.0e-7) + && relative_eq!(q * &p, rp, epsilon = 1.0e-7) + && relative_eq!(&q * p, rp, epsilon = 1.0e-7) + && relative_eq!(&q * &p, rp, epsilon = 1.0e-7) } - /* * * Inversion. @@ -76,15 +83,14 @@ quickcheck!( */ fn unit_quaternion_inv(q: UnitQuaternion) -> bool { let iq = q.inverse(); - relative_eq!(&iq * &q, UnitQuaternion::identity(), epsilon = 1.0e-7) && - relative_eq!( iq * &q, UnitQuaternion::identity(), epsilon = 1.0e-7) && - relative_eq!(&iq * q, UnitQuaternion::identity(), epsilon = 1.0e-7) && - relative_eq!( iq * q, UnitQuaternion::identity(), epsilon = 1.0e-7) && - - relative_eq!(&q * &iq, UnitQuaternion::identity(), epsilon = 1.0e-7) && - relative_eq!( q * &iq, UnitQuaternion::identity(), epsilon = 1.0e-7) && - relative_eq!(&q * iq, UnitQuaternion::identity(), epsilon = 1.0e-7) && - relative_eq!( q * iq, UnitQuaternion::identity(), epsilon = 1.0e-7) + relative_eq!(&iq * &q, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(iq * &q, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(&iq * q, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(iq * q, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(&q * &iq, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(q * &iq, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(&q * iq, UnitQuaternion::identity(), epsilon = 1.0e-7) + && relative_eq!(q * iq, UnitQuaternion::identity(), epsilon = 1.0e-7) } /* @@ -98,8 +104,8 @@ quickcheck!( relative_eq!(q * v, r * v, epsilon = 1.0e-7) && relative_eq!(q * p, r * p, epsilon = 1.0e-7) && // Equivalence q = -q - relative_eq!((-q) * v, r * v, epsilon = 1.0e-7) && - relative_eq!((-q) * p, r * p, epsilon = 1.0e-7) + relative_eq!(UnitQuaternion::new_unchecked(-q.into_inner()) * v, r * v, epsilon = 1.0e-7) && + relative_eq!(UnitQuaternion::new_unchecked(-q.into_inner()) * p, r * p, epsilon = 1.0e-7) } /* @@ -108,7 +114,7 @@ quickcheck!( * */ fn unit_quaternion_double_covering(q: UnitQuaternion) -> bool { - let mq = -q; + let mq = UnitQuaternion::new_unchecked(-q.into_inner()); mq == q && mq.angle() == q.angle() && mq.axis() == q.axis() } @@ -116,28 +122,34 @@ quickcheck!( // Test that all operators (incl. all combinations of references) work. // See the top comment on `geometry/quaternion_ops.rs` for details on which operations are // supported. - fn all_op_exist(q: Quaternion, uq: UnitQuaternion, - v: Vector3, p: Point3, r: Rotation3, - s: f64) -> bool { + fn all_op_exist( + q: Quaternion, + uq: UnitQuaternion, + v: Vector3, + p: Point3, + r: Rotation3, + s: f64 + ) -> bool + { let uv = Unit::new_normalize(v); let qpq = q + q; let qmq = q - q; let qMq = q * q; - let mq = -q; + let mq = -q; let qMs = q * s; let qDs = q / s; let sMq = s * q; let uqMuq = uq * uq; - let uqMr = uq * r; - let rMuq = r * uq; + let uqMr = uq * r; + let rMuq = r * uq; let uqDuq = uq / uq; - let uqDr = uq / r; - let rDuq = r / uq; + let uqDr = uq / r; + let rDuq = r / uq; - let uqMp = uq * p; - let uqMv = uq * v; + let uqMp = uq * p; + let uqMv = uq * v; let uqMuv = uq * uv; let mut qMs1 = q; @@ -186,81 +198,60 @@ quickcheck!( uqDr1 /= r; uqDr2 /= &r; - qMs1 == qMs && - - qMq1 == qMq && - qMq1 == qMq2 && - - qpq1 == qpq && - qpq1 == qpq2 && - - qmq1 == qmq && - qmq1 == qmq2 && - - uqMuq1 == uqMuq && - uqMuq1 == uqMuq2 && - - uqMr1 == uqMr && - uqMr1 == uqMr2 && - - uqDuq1 == uqDuq && - uqDuq1 == uqDuq2 && - - uqDr1 == uqDr && - uqDr1 == uqDr2 && - - qpq == &q + &q && - qpq == q + &q && - qpq == &q + q && - - qmq == &q - &q && - qmq == q - &q && - qmq == &q - q && - - qMq == &q * &q && - qMq == q * &q && - qMq == &q * q && - - mq == -&q && - - qMs == &q * s && - qDs == &q / s && - sMq == s * &q && - - uqMuq == &uq * &uq && - uqMuq == uq * &uq && - uqMuq == &uq * uq && - - uqMr == &uq * &r && - uqMr == uq * &r && - uqMr == &uq * r && - - rMuq == &r * &uq && - rMuq == r * &uq && - rMuq == &r * uq && - - uqDuq == &uq / &uq && - uqDuq == uq / &uq && - uqDuq == &uq / uq && - - uqDr == &uq / &r && - uqDr == uq / &r && - uqDr == &uq / r && - - rDuq == &r / &uq && - rDuq == r / &uq && - rDuq == &r / uq && - - uqMp == &uq * &p && - uqMp == uq * &p && - uqMp == &uq * p && - - uqMv == &uq * &v && - uqMv == uq * &v && - uqMv == &uq * v && - - uqMuv == &uq * &uv && - uqMuv == uq * &uv && - uqMuv == &uq * uv + qMs1 == qMs + && qMq1 == qMq + && qMq1 == qMq2 + && qpq1 == qpq + && qpq1 == qpq2 + && qmq1 == qmq + && qmq1 == qmq2 + && uqMuq1 == uqMuq + && uqMuq1 == uqMuq2 + && uqMr1 == uqMr + && uqMr1 == uqMr2 + && uqDuq1 == uqDuq + && uqDuq1 == uqDuq2 + && uqDr1 == uqDr + && uqDr1 == uqDr2 + && qpq == &q + &q + && qpq == q + &q + && qpq == &q + q + && qmq == &q - &q + && qmq == q - &q + && qmq == &q - q + && qMq == &q * &q + && qMq == q * &q + && qMq == &q * q + && mq == -&q + && qMs == &q * s + && qDs == &q / s + && sMq == s * &q + && uqMuq == &uq * &uq + && uqMuq == uq * &uq + && uqMuq == &uq * uq + && uqMr == &uq * &r + && uqMr == uq * &r + && uqMr == &uq * r + && rMuq == &r * &uq + && rMuq == r * &uq + && rMuq == &r * uq + && uqDuq == &uq / &uq + && uqDuq == uq / &uq + && uqDuq == &uq / uq + && uqDr == &uq / &r + && uqDr == uq / &r + && uqDr == &uq / r + && rDuq == &r / &uq + && rDuq == r / &uq + && rDuq == &r / uq + && uqMp == &uq * &p + && uqMp == uq * &p + && uqMp == &uq * p + && uqMv == &uq * &v + && uqMv == uq * &v + && uqMv == &uq * v + && uqMuv == &uq * &uv + && uqMuv == uq * &uv + && uqMuv == &uq * uv } );