forked from M-Labs/nalgebra
Add prealloc suffix to spmm_csr and spadd_csr
The suffix is intended to communicate that these methods assume `preallocated` storage, i.e. they try to store the result in a matrix which already has the correct sparsity pattern for the operation.
This commit is contained in:
parent
4af3fcbdd3
commit
66cbd26702
@ -1,7 +1,7 @@
|
||||
use crate::csr::CsrMatrix;
|
||||
|
||||
use std::ops::{Add, Mul};
|
||||
use crate::ops::serial::{spadd_csr, spadd_pattern, spmm_pattern, spmm_csr};
|
||||
use crate::ops::serial::{spadd_csr_prealloc, spadd_pattern, spmm_pattern, spmm_csr_prealloc};
|
||||
use nalgebra::{ClosedAdd, ClosedMul, Scalar};
|
||||
use num_traits::{Zero, One};
|
||||
use std::sync::Arc;
|
||||
@ -21,8 +21,8 @@ where
|
||||
// We are giving data that is valid by definition, so it is safe to unwrap below
|
||||
let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
|
||||
.unwrap();
|
||||
spadd_csr(T::zero(), &mut result, T::one(), Op::NoOp(&self)).unwrap();
|
||||
spadd_csr(T::one(), &mut result, T::one(), Op::NoOp(&rhs)).unwrap();
|
||||
spadd_csr_prealloc(T::zero(), &mut result, T::one(), Op::NoOp(&self)).unwrap();
|
||||
spadd_csr_prealloc(T::one(), &mut result, T::one(), Op::NoOp(&rhs)).unwrap();
|
||||
result
|
||||
}
|
||||
}
|
||||
@ -35,7 +35,7 @@ where
|
||||
|
||||
fn add(mut self, rhs: &'a CsrMatrix<T>) -> Self::Output {
|
||||
if Arc::ptr_eq(self.pattern(), rhs.pattern()) {
|
||||
spadd_csr(T::one(), &mut self, T::one(), Op::NoOp(rhs)).unwrap();
|
||||
spadd_csr_prealloc(T::one(), &mut self, T::one(), Op::NoOp(rhs)).unwrap();
|
||||
self
|
||||
} else {
|
||||
&self + rhs
|
||||
@ -90,7 +90,7 @@ impl_matrix_mul!(<'a>(a: &'a CsrMatrix<T>, b: &'a CsrMatrix<T>) -> CsrMatrix<T>
|
||||
let values = vec![T::zero(); pattern.nnz()];
|
||||
let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
|
||||
.unwrap();
|
||||
spmm_csr(T::zero(),
|
||||
spmm_csr_prealloc(T::zero(),
|
||||
&mut result,
|
||||
T::one(),
|
||||
Op::NoOp(a),
|
||||
|
@ -87,7 +87,7 @@ fn spadd_csr_unexpected_entry() -> OperationError {
|
||||
///
|
||||
/// If the pattern of `c` does not accommodate all the non-zero entries in `a`, an error is
|
||||
/// returned.
|
||||
pub fn spadd_csr<T>(beta: T,
|
||||
pub fn spadd_csr_prealloc<T>(beta: T,
|
||||
c: &mut CsrMatrix<T>,
|
||||
alpha: T,
|
||||
a: Op<&CsrMatrix<T>>)
|
||||
@ -161,7 +161,7 @@ fn spmm_csr_unexpected_entry() -> OperationError {
|
||||
}
|
||||
|
||||
/// Sparse-sparse matrix multiplication, `C <- beta * C + alpha * op(A) * op(B)`.
|
||||
pub fn spmm_csr<T>(
|
||||
pub fn spmm_csr_prealloc<T>(
|
||||
beta: T,
|
||||
c: &mut CsrMatrix<T>,
|
||||
alpha: T,
|
||||
@ -218,7 +218,7 @@ where
|
||||
}
|
||||
};
|
||||
|
||||
spmm_csr(beta, c, alpha, NoOp(a.as_ref()), NoOp(b.as_ref()))
|
||||
spmm_csr_prealloc(beta, c, alpha, NoOp(a.as_ref()), NoOp(b.as_ref()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use crate::common::{csr_strategy, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ,
|
||||
PROPTEST_I32_VALUE_STRATEGY};
|
||||
use nalgebra_sparse::ops::serial::{spmm_csr_dense, spadd_pattern, spmm_pattern, spadd_csr, spmm_csr};
|
||||
use nalgebra_sparse::ops::serial::{spmm_csr_dense, spadd_pattern, spmm_pattern, spadd_csr_prealloc, spmm_csr_prealloc};
|
||||
use nalgebra_sparse::ops::{Op};
|
||||
use nalgebra_sparse::csr::CsrMatrix;
|
||||
use nalgebra_sparse::proptest::{csr, sparsity_pattern};
|
||||
@ -78,7 +78,7 @@ struct SpaddCsrArgs<T> {
|
||||
a: Op<CsrMatrix<T>>,
|
||||
}
|
||||
|
||||
fn spadd_csr_args_strategy() -> impl Strategy<Value=SpaddCsrArgs<i32>> {
|
||||
fn spadd_csr_prealloc_args_strategy() -> impl Strategy<Value=SpaddCsrArgs<i32>> {
|
||||
let value_strategy = PROPTEST_I32_VALUE_STRATEGY;
|
||||
|
||||
spadd_pattern_strategy()
|
||||
@ -150,7 +150,7 @@ struct SpmmCsrArgs<T> {
|
||||
b: Op<CsrMatrix<T>>,
|
||||
}
|
||||
|
||||
fn spmm_csr_args_strategy() -> impl Strategy<Value=SpmmCsrArgs<i32>> {
|
||||
fn spmm_csr_prealloc_args_strategy() -> impl Strategy<Value=SpmmCsrArgs<i32>> {
|
||||
spmm_pattern_strategy()
|
||||
.prop_flat_map(|(a_pattern, b_pattern)| {
|
||||
let a_values = vec![PROPTEST_I32_VALUE_STRATEGY; a_pattern.nnz()];
|
||||
@ -287,12 +287,12 @@ proptest! {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn spadd_csr_test(SpaddCsrArgs { c, beta, alpha, a } in spadd_csr_args_strategy()) {
|
||||
fn spadd_csr_prealloc_test(SpaddCsrArgs { c, beta, alpha, a } in spadd_csr_prealloc_args_strategy()) {
|
||||
// Test that we get the expected result by comparing to an equivalent dense operation
|
||||
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
||||
|
||||
let mut c_sparse = c.clone();
|
||||
spadd_csr(beta, &mut c_sparse, alpha, a.as_ref()).unwrap();
|
||||
spadd_csr_prealloc(beta, &mut c_sparse, alpha, a.as_ref()).unwrap();
|
||||
|
||||
let mut c_dense = DMatrix::from(&c);
|
||||
let op_a_dense = match a {
|
||||
@ -363,13 +363,13 @@ proptest! {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn spmm_csr_test(SpmmCsrArgs { c, beta, alpha, a, b }
|
||||
in spmm_csr_args_strategy()
|
||||
fn spmm_csr_prealloc_test(SpmmCsrArgs { c, beta, alpha, a, b }
|
||||
in spmm_csr_prealloc_args_strategy()
|
||||
) {
|
||||
// Test that we get the expected result by comparing to an equivalent dense operation
|
||||
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
||||
let mut c_sparse = c.clone();
|
||||
spmm_csr(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap();
|
||||
spmm_csr_prealloc(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap();
|
||||
|
||||
let mut c_dense = DMatrix::from(&c);
|
||||
let op_a_dense = match a {
|
||||
@ -386,7 +386,7 @@ proptest! {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn spmm_csr_panics_on_dim_mismatch(
|
||||
fn spmm_csr_prealloc_panics_on_dim_mismatch(
|
||||
(alpha, beta, c, a, b)
|
||||
in (PROPTEST_I32_VALUE_STRATEGY,
|
||||
PROPTEST_I32_VALUE_STRATEGY,
|
||||
@ -424,7 +424,7 @@ proptest! {
|
||||
|
||||
let result = catch_unwind(|| {
|
||||
let mut spmm_result = c.clone();
|
||||
spmm_csr(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()).unwrap();
|
||||
spmm_csr_prealloc(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()).unwrap();
|
||||
});
|
||||
|
||||
prop_assert!(result.is_err(),
|
||||
@ -432,7 +432,7 @@ proptest! {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn spadd_csr_panics_on_dim_mismatch(
|
||||
fn spadd_csr_prealloc_panics_on_dim_mismatch(
|
||||
(alpha, beta, c, op_a)
|
||||
in (PROPTEST_I32_VALUE_STRATEGY,
|
||||
PROPTEST_I32_VALUE_STRATEGY,
|
||||
@ -456,7 +456,7 @@ proptest! {
|
||||
|
||||
let result = catch_unwind(|| {
|
||||
let mut spmm_result = c.clone();
|
||||
spadd_csr(beta, &mut spmm_result, alpha, op_a.as_ref()).unwrap();
|
||||
spadd_csr_prealloc(beta, &mut spmm_result, alpha, op_a.as_ref()).unwrap();
|
||||
});
|
||||
|
||||
prop_assert!(result.is_err(),
|
||||
|
Loading…
Reference in New Issue
Block a user