forked from M-Labs/nalgebra
Merge pull request #979 from Fuuzetsu/cholesky-lax
Allow setting Cholesky field directly; more lax decomposition method
This commit is contained in:
commit
654eca7f80
@ -74,6 +74,14 @@ where
|
|||||||
Cholesky { chol: matrix }
|
Cholesky { chol: matrix }
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Uses the given matrix as-is without any checks or modifications as the
|
||||||
|
/// Cholesky decomposition.
|
||||||
|
///
|
||||||
|
/// It is up to the user to ensure all invariants hold.
|
||||||
|
pub fn pack_dirty(matrix: OMatrix<T, D, D>) -> Self {
|
||||||
|
Cholesky { chol: matrix }
|
||||||
|
}
|
||||||
|
|
||||||
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
|
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
|
||||||
/// upper-triangular part filled with zeros.
|
/// upper-triangular part filled with zeros.
|
||||||
pub fn unpack(mut self) -> OMatrix<T, D, D> {
|
pub fn unpack(mut self) -> OMatrix<T, D, D> {
|
||||||
@ -163,7 +171,32 @@ where
|
|||||||
///
|
///
|
||||||
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
||||||
/// to be symmetric and only the lower-triangular part is read.
|
/// to be symmetric and only the lower-triangular part is read.
|
||||||
pub fn new(mut matrix: OMatrix<T, D, D>) -> Option<Self> {
|
pub fn new(matrix: OMatrix<T, D, D>) -> Option<Self> {
|
||||||
|
Self::new_internal(matrix, None)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Attempts to approximate the Cholesky decomposition of `matrix` by
|
||||||
|
/// replacing non-positive values on the diagonals during the decomposition
|
||||||
|
/// with the given `substitute`.
|
||||||
|
///
|
||||||
|
/// [`try_sqrt`](ComplexField::try_sqrt) will be applied to the `substitute`
|
||||||
|
/// when it has to be used.
|
||||||
|
///
|
||||||
|
/// If your input matrix results only in positive values on the diagonals
|
||||||
|
/// during the decomposition, `substitute` is unused and the result is just
|
||||||
|
/// the same as if you used [`new`](Cholesky::new).
|
||||||
|
///
|
||||||
|
/// This method allows to compensate for matrices with very small or even
|
||||||
|
/// negative values due to numerical errors but necessarily results in only
|
||||||
|
/// an approximation: it is basically a hack. If you don't specifically need
|
||||||
|
/// Cholesky, it may be better to consider alternatives like the
|
||||||
|
/// [`LU`](crate::linalg::LU) decomposition/factorization.
|
||||||
|
pub fn new_with_substitute(matrix: OMatrix<T, D, D>, substitute: T) -> Option<Self> {
|
||||||
|
Self::new_internal(matrix, Some(substitute))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Common implementation for `new` and `new_with_substitute`.
|
||||||
|
fn new_internal(mut matrix: OMatrix<T, D, D>, substitute: Option<T>) -> Option<Self> {
|
||||||
assert!(matrix.is_square(), "The input matrix must be square.");
|
assert!(matrix.is_square(), "The input matrix must be square.");
|
||||||
|
|
||||||
let n = matrix.nrows();
|
let n = matrix.nrows();
|
||||||
@ -179,17 +212,25 @@ where
|
|||||||
col_j.axpy(factor.conjugate(), &col_k, T::one());
|
col_j.axpy(factor.conjugate(), &col_k, T::one());
|
||||||
}
|
}
|
||||||
|
|
||||||
let diag = unsafe { matrix.get_unchecked((j, j)).clone() };
|
let sqrt_denom = |v: T| {
|
||||||
if !diag.is_zero() {
|
if v.is_zero() {
|
||||||
if let Some(denom) = diag.try_sqrt() {
|
return None;
|
||||||
unsafe {
|
|
||||||
*matrix.get_unchecked_mut((j, j)) = denom.clone();
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut col = matrix.slice_range_mut(j + 1.., j);
|
|
||||||
col /= denom;
|
|
||||||
continue;
|
|
||||||
}
|
}
|
||||||
|
v.try_sqrt()
|
||||||
|
};
|
||||||
|
|
||||||
|
let diag = unsafe { matrix.get_unchecked((j, j)).clone() };
|
||||||
|
|
||||||
|
if let Some(denom) =
|
||||||
|
sqrt_denom(diag).or_else(|| substitute.clone().and_then(sqrt_denom))
|
||||||
|
{
|
||||||
|
unsafe {
|
||||||
|
*matrix.get_unchecked_mut((j, j)) = denom.clone();
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut col = matrix.slice_range_mut(j + 1.., j);
|
||||||
|
col /= denom;
|
||||||
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// The diagonal element is either zero or its square root could not
|
// The diagonal element is either zero or its square root could not
|
||||||
|
@ -1,5 +1,16 @@
|
|||||||
#![cfg(all(feature = "proptest-support", feature = "debug"))]
|
#![cfg(all(feature = "proptest-support", feature = "debug"))]
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
// #[rustfmt::skip]
|
||||||
|
fn cholesky_with_substitute() {
|
||||||
|
// Make a tiny covariance matrix with a small covariance value.
|
||||||
|
let m = na::Matrix2::new(1.0, f64::NAN, 1.0, 1e-32);
|
||||||
|
// Show that the cholesky fails for our matrix. We then try again with a substitute.
|
||||||
|
assert!(na::Cholesky::new(m).is_none());
|
||||||
|
// ...and show that we get some result this time around.
|
||||||
|
assert!(na::Cholesky::new_with_substitute(m, 1e-8).is_some());
|
||||||
|
}
|
||||||
|
|
||||||
macro_rules! gen_tests(
|
macro_rules! gen_tests(
|
||||||
($module: ident, $scalar: ty) => {
|
($module: ident, $scalar: ty) => {
|
||||||
mod $module {
|
mod $module {
|
||||||
|
Loading…
Reference in New Issue
Block a user