forked from M-Labs/nalgebra
Coding style fix.
This commit is contained in:
parent
a0fffe93a9
commit
628aac0961
@ -11,10 +11,10 @@ use std::cmp::min;
|
||||
/// * `dim` - the dimension of the space the resulting matrix operates in
|
||||
/// * `start` - the starting dimension of the subspace of the reflexion
|
||||
/// * `vec` - the vector defining the reflection.
|
||||
pub fn householder_matrix<N: Float,
|
||||
pub fn householder_matrix<N, V, M>(dim: uint, start: uint, vec: V) -> M
|
||||
where N: Float,
|
||||
M: Eye + Indexable<(uint, uint), N>,
|
||||
V: Indexable<uint, N>>
|
||||
(dim: uint, start: uint, vec: V) -> M {
|
||||
V: Indexable<uint, N> {
|
||||
let mut qk : M = Eye::new_identity(dim);
|
||||
let subdim = vec.shape();
|
||||
|
||||
@ -38,12 +38,10 @@ pub fn householder_matrix<N: Float,
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `m` - matrix to decompose
|
||||
pub fn qr<N: Float,
|
||||
pub fn qr<N, V, M>(m: &M) -> (M, M)
|
||||
where N: Float,
|
||||
V: Indexable<uint, N> + Norm<N>,
|
||||
M: Clone + Eye + ColSlice<V> + Transpose
|
||||
+ Indexable<(uint, uint), N> + Mul<M, M>>
|
||||
(m: &M)
|
||||
-> (M, M) {
|
||||
M: Clone + Eye + ColSlice<V> + Transpose + Indexable<(uint, uint), N> + Mul<M, M> {
|
||||
let (rows, cols) = m.shape();
|
||||
assert!(rows >= cols);
|
||||
let mut q : M = Eye::new_identity(rows);
|
||||
@ -75,14 +73,12 @@ pub fn qr<N: Float,
|
||||
}
|
||||
|
||||
/// Eigendecomposition of a square matrix using the qr algorithm.
|
||||
pub fn eigen_qr<N: Float,
|
||||
pub fn eigen_qr<N, V, V2, M>(m: &M, eps: &N, niter: uint) -> (M, V2)
|
||||
where N: Float,
|
||||
V: Indexable<uint, N> + Norm<N>,
|
||||
V2: Zero,
|
||||
M: Clone + Eye + ColSlice<V> + Transpose
|
||||
+ Indexable<(uint, uint), N> + Mul<M, M>
|
||||
+ Diag<V2> + ApproxEq<N> + Add<M, M>
|
||||
+ Sub<M, M>>
|
||||
(m: &M, eps: &N, niter: uint) -> (M, V2) {
|
||||
M: Clone + Eye + ColSlice<V> + Transpose + Indexable<(uint, uint), N> + Mul<M, M>
|
||||
+ Diag<V2> + ApproxEq<N> + Add<M, M> + Sub<M, M> {
|
||||
let (rows, cols) = m.shape();
|
||||
|
||||
assert!(rows == cols, "The matrix being decomposed must be square.");
|
||||
|
Loading…
Reference in New Issue
Block a user