forked from M-Labs/nalgebra
Add from_basis_unchecked to rotation types.
This commit is contained in:
parent
6ed6084745
commit
6139372c38
@ -266,6 +266,17 @@ where
|
|||||||
Self::new_unchecked(q)
|
Self::new_unchecked(q)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Builds an unit quaternion from a basis assumed to be orthonormal.
|
||||||
|
///
|
||||||
|
/// In order to get a valid unit-quaternion, the input must be an
|
||||||
|
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||||
|
/// all orthogonal to each other. These invariants are not checked
|
||||||
|
/// by this method.
|
||||||
|
pub fn from_basis_unchecked(basis: &[Vector3<N>; 3]) -> Self {
|
||||||
|
let rot = Rotation3::from_basis_unchecked(basis);
|
||||||
|
Self::from_rotation_matrix(&rot)
|
||||||
|
}
|
||||||
|
|
||||||
/// Builds an unit quaternion from a rotation matrix.
|
/// Builds an unit quaternion from a rotation matrix.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
|
@ -12,7 +12,7 @@ use std::ops::Neg;
|
|||||||
|
|
||||||
use crate::base::dimension::{U1, U2, U3};
|
use crate::base::dimension::{U1, U2, U3};
|
||||||
use crate::base::storage::Storage;
|
use crate::base::storage::Storage;
|
||||||
use crate::base::{Matrix2, Matrix3, MatrixN, Unit, Vector, Vector1, Vector3, VectorN};
|
use crate::base::{Matrix2, Matrix3, MatrixN, Unit, Vector, Vector1, Vector2, Vector3, VectorN};
|
||||||
|
|
||||||
use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion};
|
use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion};
|
||||||
|
|
||||||
@ -53,6 +53,17 @@ impl<N: SimdRealField> Rotation2<N> {
|
|||||||
|
|
||||||
/// # Construction from an existing 2D matrix or rotations
|
/// # Construction from an existing 2D matrix or rotations
|
||||||
impl<N: SimdRealField> Rotation2<N> {
|
impl<N: SimdRealField> Rotation2<N> {
|
||||||
|
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||||
|
///
|
||||||
|
/// In order to get a valid unit-quaternion, the input must be an
|
||||||
|
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||||
|
/// all orthogonal to each other. These invariants are not checked
|
||||||
|
/// by this method.
|
||||||
|
pub fn from_basis_unchecked(basis: &[Vector2<N>; 2]) -> Self {
|
||||||
|
let mat = Matrix2::from_columns(&basis[..]);
|
||||||
|
Self::from_matrix_unchecked(mat)
|
||||||
|
}
|
||||||
|
|
||||||
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
|
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
|
||||||
///
|
///
|
||||||
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
||||||
@ -655,6 +666,17 @@ where
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||||
|
///
|
||||||
|
/// In order to get a valid unit-quaternion, the input must be an
|
||||||
|
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||||
|
/// all orthogonal to each other. These invariants are not checked
|
||||||
|
/// by this method.
|
||||||
|
pub fn from_basis_unchecked(basis: &[Vector3<N>; 3]) -> Self {
|
||||||
|
let mat = Matrix3::from_columns(&basis[..]);
|
||||||
|
Self::from_matrix_unchecked(mat)
|
||||||
|
}
|
||||||
|
|
||||||
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
|
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
|
||||||
///
|
///
|
||||||
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
||||||
|
@ -8,7 +8,7 @@ use rand::Rng;
|
|||||||
|
|
||||||
use crate::base::dimension::{U1, U2};
|
use crate::base::dimension::{U1, U2};
|
||||||
use crate::base::storage::Storage;
|
use crate::base::storage::Storage;
|
||||||
use crate::base::{Matrix2, Unit, Vector};
|
use crate::base::{Matrix2, Unit, Vector, Vector2};
|
||||||
use crate::geometry::{Rotation2, UnitComplex};
|
use crate::geometry::{Rotation2, UnitComplex};
|
||||||
use simba::scalar::RealField;
|
use simba::scalar::RealField;
|
||||||
use simba::simd::SimdRealField;
|
use simba::simd::SimdRealField;
|
||||||
@ -164,6 +164,18 @@ where
|
|||||||
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
|
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||||
|
///
|
||||||
|
/// In order to get a valid unit-quaternion, the input must be an
|
||||||
|
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||||
|
/// all orthogonal to each other. These invariants are not checked
|
||||||
|
/// by this method.
|
||||||
|
pub fn from_basis_unchecked(basis: &[Vector2<N>; 2]) -> Self {
|
||||||
|
let mat = Matrix2::from_columns(&basis[..]);
|
||||||
|
let rot = Rotation2::from_matrix_unchecked(mat);
|
||||||
|
Self::from_rotation_matrix(&rot)
|
||||||
|
}
|
||||||
|
|
||||||
/// Builds an unit complex by extracting the rotation part of the given transformation `m`.
|
/// Builds an unit complex by extracting the rotation part of the given transformation `m`.
|
||||||
///
|
///
|
||||||
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
/// This is an iterative method. See `.from_matrix_eps` to provide mover
|
||||||
|
Loading…
Reference in New Issue
Block a user