forked from M-Labs/nalgebra
finished cleaning
This commit is contained in:
parent
3d08a80d8d
commit
59c6a98615
@ -8,7 +8,6 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vec
|
||||
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
use crate::dimension::{Dim, DimAdd, DimSum, DimDiff, DimSub, Dynamic, U1};
|
||||
use crate::storage::{Storage, StorageMut};
|
||||
use crate::base::allocator::Reallocator;
|
||||
|
||||
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
@ -156,7 +155,7 @@ where
|
||||
DefaultAllocator: Allocator<N, R2, U1>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
rank_one_update(&mut self.chol, x, sigma)
|
||||
Self::xx_rank_one_update(&mut self.chol, x, sigma)
|
||||
}
|
||||
|
||||
/// Updates the decomposition such that we get the decomposition of a matrix with the given column `col` in the `j`th position.
|
||||
@ -170,7 +169,7 @@ where
|
||||
D: DimAdd<U1>,
|
||||
R2: Dim,
|
||||
S2: Storage<N, R2, U1>,
|
||||
DefaultAllocator: Reallocator<N, D, D, D, DimSum<D, U1>> + Reallocator<N, D, DimSum<D, U1>, DimSum<D, U1>, DimSum<D, U1>>,
|
||||
DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>,
|
||||
{
|
||||
// for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
|
||||
@ -178,8 +177,12 @@ where
|
||||
assert_eq!(n, self.chol.nrows() + 1, "The new column must have the size of the factored matrix plus one.");
|
||||
assert!(j < n, "j needs to be within the bound of the new matrix.");
|
||||
|
||||
// TODO what is the fastest way to produce the new matrix ?
|
||||
let mut chol= self.chol.clone().insert_column(j, N::zero()).insert_row(j, N::zero());
|
||||
// loads the data into a new matrix with an additional jth row/column
|
||||
let mut chol = unsafe { Matrix::new_uninitialized_generic(self.chol.data.shape().0.add(U1), self.chol.data.shape().1.add(U1)) };
|
||||
chol.slice_range_mut(..j, ..j).copy_from(&self.chol.slice_range(..j, ..j));
|
||||
chol.slice_range_mut(..j, j+1..).copy_from(&self.chol.slice_range(..j, j..));
|
||||
chol.slice_range_mut(j+1.., ..j).copy_from(&self.chol.slice_range(j.., ..j));
|
||||
chol.slice_range_mut(j+1.., j+1..).copy_from(&self.chol.slice_range(j.., j..));
|
||||
|
||||
// update the jth row
|
||||
let top_left_corner = self.chol.slice_range(..j, ..j);
|
||||
@ -200,7 +203,7 @@ where
|
||||
|
||||
// update the bottom right corner
|
||||
let mut bottom_right_corner = chol.slice_range_mut(j+1.., j+1..);
|
||||
rank_one_update(&mut bottom_right_corner, &new_colj, -N::real(N::one()));
|
||||
Self::xx_rank_one_update(&mut bottom_right_corner, &new_colj, -N::real(N::one()));
|
||||
|
||||
Cholesky { chol }
|
||||
}
|
||||
@ -208,53 +211,43 @@ where
|
||||
/// Updates the decomposition such that we get the decomposition of the factored matrix with its `j`th column removed.
|
||||
/// Since the matrix is square, the `j`th row will also be removed.
|
||||
pub fn remove_column(
|
||||
self,
|
||||
&self,
|
||||
j: usize,
|
||||
) -> Cholesky<N, DimDiff<D, U1>>
|
||||
where
|
||||
D: DimSub<U1>,
|
||||
DefaultAllocator: Reallocator<N, D, D, D, DimDiff<D, U1>> + Reallocator<N, D, DimDiff<D, U1>, DimDiff<D, U1>, DimDiff<D, U1>>,
|
||||
DefaultAllocator: Allocator<N, DimDiff<D, U1>, DimDiff<D, U1>>
|
||||
{
|
||||
let n = self.chol.nrows();
|
||||
assert!(n > 0, "The matrix needs at least one column.");
|
||||
assert!(j < n, "j needs to be within the bound of the matrix.");
|
||||
|
||||
// TODO what is the fastest way to produce the new matrix ?
|
||||
let mut chol= self.chol.clone().remove_column(j).remove_row(j);
|
||||
// loads the data into a new matrix except for the jth row/column
|
||||
let mut chol = unsafe { Matrix::new_uninitialized_generic(self.chol.data.shape().0.sub(U1), self.chol.data.shape().1.sub(U1)) };
|
||||
chol.slice_range_mut(..j, ..j).copy_from(&self.chol.slice_range(..j, ..j));
|
||||
chol.slice_range_mut(..j, j..).copy_from(&self.chol.slice_range(..j, j+1..));
|
||||
chol.slice_range_mut(j.., ..j).copy_from(&self.chol.slice_range(j+1.., ..j));
|
||||
chol.slice_range_mut(j.., j..).copy_from(&self.chol.slice_range(j+1.., j+1..));
|
||||
|
||||
// updates the bottom right corner
|
||||
let mut bottom_right_corner = chol.slice_range_mut(j.., j..);
|
||||
let old_colj = self.chol.slice_range(j+1.., j);
|
||||
rank_one_update(&mut bottom_right_corner, &old_colj, N::real(N::one()));
|
||||
Self::xx_rank_one_update(&mut bottom_right_corner, &old_colj, N::real(N::one()));
|
||||
|
||||
Cholesky { chol }
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
///
|
||||
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
||||
/// to be symmetric and only the lower-triangular part is read.
|
||||
pub fn cholesky(self) -> Option<Cholesky<N, D>> {
|
||||
Cholesky::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
||||
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
||||
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
|
||||
///
|
||||
/// This helper method is calling for by `rank_one_update` but also `insert_column` and `remove_column`
|
||||
/// where it is used on a square slice of the decomposition
|
||||
fn rank_one_update<N, D, S, Rx, Sx>(chol : &mut Matrix<N, D, D, S>, x: &Vector<N, Rx, Sx>, sigma: N::RealField)
|
||||
fn xx_rank_one_update<Dm, Sm, Rx, Sx>(chol : &mut Matrix<N, Dm, Dm, Sm>, x: &Vector<N, Rx, Sx>, sigma: N::RealField)
|
||||
where
|
||||
N: ComplexField,
|
||||
D: Dim,
|
||||
//N: ComplexField,
|
||||
Dm: Dim,
|
||||
Rx: Dim,
|
||||
S: StorageMut<N, D, D>,
|
||||
Sm: StorageMut<N, Dm, Dm>,
|
||||
Sx: Storage<N, Rx, U1>,
|
||||
DefaultAllocator: Allocator<N, Rx, U1>,
|
||||
{
|
||||
@ -292,3 +285,17 @@ fn rank_one_update<N, D, S, Rx, Sx>(chol : &mut Matrix<N, D, D, S>, x: &Vector<N
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
///
|
||||
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
||||
/// to be symmetric and only the lower-triangular part is read.
|
||||
pub fn cholesky(self) -> Option<Cholesky<N, D>> {
|
||||
Cholesky::new(self.into_owned())
|
||||
}
|
||||
}
|
||||
|
@ -100,7 +100,7 @@ macro_rules! gen_tests(
|
||||
}
|
||||
|
||||
fn cholesky_insert_column(n: usize) -> bool {
|
||||
let n = n.max(1).min(50);
|
||||
let n = n.max(1).min(10);
|
||||
let j = random::<usize>() % n;
|
||||
let m_updated = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
||||
|
||||
@ -112,15 +112,11 @@ macro_rules! gen_tests(
|
||||
let chol = m.clone().cholesky().unwrap().insert_column(j, &col);
|
||||
let m_chol_updated = chol.l() * chol.l().adjoint();
|
||||
|
||||
println!("n={} j={}", n, j);
|
||||
println!("chol updated:{}", m_chol_updated);
|
||||
println!("m updated:{}", m_updated);
|
||||
|
||||
relative_eq!(m_updated, m_chol_updated, epsilon = 1.0e-7)
|
||||
}
|
||||
|
||||
fn cholesky_remove_column(n: usize) -> bool {
|
||||
let n = n.max(1).min(5);
|
||||
let n = n.max(1).min(10);
|
||||
let j = random::<usize>() % n;
|
||||
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user