forked from M-Labs/nalgebra
Implement requested changes
Signed-off-by: Christopher Rabotin <christopher.rabotin@gmail.com>
This commit is contained in:
parent
06861a9755
commit
4ff4911ac3
@ -4,10 +4,21 @@ use serde::{Deserialize, Serialize};
|
|||||||
use crate::allocator::Allocator;
|
use crate::allocator::Allocator;
|
||||||
use crate::base::{DefaultAllocator, MatrixN, VectorN, U1};
|
use crate::base::{DefaultAllocator, MatrixN, VectorN, U1};
|
||||||
use crate::dimension::Dim;
|
use crate::dimension::Dim;
|
||||||
|
use crate::storage::Storage;
|
||||||
use simba::scalar::ComplexField;
|
use simba::scalar::ComplexField;
|
||||||
|
|
||||||
/// UDU factorization
|
/// UDU factorization
|
||||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||||
|
#[cfg_attr(
|
||||||
|
feature = "serde-serialize",
|
||||||
|
serde(bound(serialize = "VectorN<N, D>: Serialize, MatrixN<N, D>: Serialize"))
|
||||||
|
)]
|
||||||
|
#[cfg_attr(
|
||||||
|
feature = "serde-serialize",
|
||||||
|
serde(bound(
|
||||||
|
deserialize = "VectorN<N, D>: Deserialize<'de>, MatrixN<N, D>: Deserialize<'de>"
|
||||||
|
))
|
||||||
|
)]
|
||||||
#[derive(Clone, Debug)]
|
#[derive(Clone, Debug)]
|
||||||
pub struct UDU<N: ComplexField, D: Dim>
|
pub struct UDU<N: ComplexField, D: Dim>
|
||||||
where
|
where
|
||||||
@ -36,33 +47,30 @@ where
|
|||||||
/// Ref.: "Optimal control and estimation-Dover Publications", Robert F. Stengel, (1994) page 360
|
/// Ref.: "Optimal control and estimation-Dover Publications", Robert F. Stengel, (1994) page 360
|
||||||
pub fn new(p: MatrixN<N, D>) -> Self {
|
pub fn new(p: MatrixN<N, D>) -> Self {
|
||||||
let n = p.ncols();
|
let n = p.ncols();
|
||||||
let n_as_dim = D::from_usize(n);
|
let n_dim = p.data.shape().1;
|
||||||
|
|
||||||
let mut d = VectorN::<N, D>::zeros_generic(n_as_dim, U1);
|
let mut d = VectorN::zeros_generic(n_dim, U1);
|
||||||
let mut u = MatrixN::<N, D>::zeros_generic(n_as_dim, n_as_dim);
|
let mut u = MatrixN::zeros_generic(n_dim, n_dim);
|
||||||
|
|
||||||
d[n - 1] = p[(n - 1, n - 1)];
|
d[n - 1] = p[(n - 1, n - 1)];
|
||||||
u[(n - 1, n - 1)] = N::one();
|
u.column_mut(n - 1)
|
||||||
|
.axpy(N::one() / d[n - 1], &p.column(n - 1), N::zero());
|
||||||
for j in (0..n - 1).rev() {
|
|
||||||
u[(j, n - 1)] = p[(j, n - 1)] / d[n - 1];
|
|
||||||
}
|
|
||||||
|
|
||||||
for j in (0..n - 1).rev() {
|
for j in (0..n - 1).rev() {
|
||||||
|
let mut d_j = d[j];
|
||||||
for k in j + 1..n {
|
for k in j + 1..n {
|
||||||
d[j] = d[j] + d[k] * u[(j, k)].powi(2);
|
d_j += d[k] * u[(j, k)].powi(2);
|
||||||
}
|
}
|
||||||
|
|
||||||
d[j] = p[(j, j)] - d[j];
|
d[j] = p[(j, j)] - d_j;
|
||||||
|
|
||||||
for i in (0..=j).rev() {
|
for i in (0..=j).rev() {
|
||||||
|
let mut u_ij = u[(i, j)];
|
||||||
for k in j + 1..n {
|
for k in j + 1..n {
|
||||||
u[(i, j)] = u[(i, j)] + d[k] * u[(j, k)] * u[(i, k)];
|
u_ij += d[k] * u[(j, k)] * u[(i, k)];
|
||||||
}
|
}
|
||||||
|
|
||||||
u[(i, j)] = p[(i, j)] - u[(i, j)];
|
u[(i, j)] = (p[(i, j)] - u_ij) / d[j];
|
||||||
|
|
||||||
u[(i, j)] /= d[j];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
u[(j, j)] = N::one();
|
u[(j, j)] = N::one();
|
||||||
|
Loading…
Reference in New Issue
Block a user