forked from M-Labs/nalgebra
Merge pull request #51 from aepsil0n/oop_style_traits
Use object-oriented style for trait methods
This commit is contained in:
commit
4abbe6803e
@ -326,13 +326,13 @@ pub fn center<N: BaseFloat, P: FloatPnt<N, V>, V>(a: &P, b: &P) -> P {
|
||||
/// Returns the distance between two points.
|
||||
#[inline(always)]
|
||||
pub fn dist<N: BaseFloat, P: FloatPnt<N, V>, V: Norm<N>>(a: &P, b: &P) -> N {
|
||||
FloatPnt::<N, V>::dist(a, b)
|
||||
a.dist(b)
|
||||
}
|
||||
|
||||
/// Returns the squared distance between two points.
|
||||
#[inline(always)]
|
||||
pub fn sqdist<N: BaseFloat, P: FloatPnt<N, V>, V: Norm<N>>(a: &P, b: &P) -> N {
|
||||
FloatPnt::<N, V>::sqdist(a, b)
|
||||
a.sqdist(b)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -355,9 +355,8 @@ impl<N: Clone + Add<N, N> + Mul<N, N> + Zero> Mul<DMat<N>, DVec<N>> for DVec<N>
|
||||
|
||||
impl<N: Clone + BaseNum + Zero + One> Inv for DMat<N> {
|
||||
#[inline]
|
||||
fn inv_cpy(m: &DMat<N>) -> Option<DMat<N>> {
|
||||
let mut res : DMat<N> = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<DMat<N>> {
|
||||
let mut res: DMat<N> = self.clone();
|
||||
if res.inv() {
|
||||
Some(res)
|
||||
}
|
||||
@ -442,21 +441,21 @@ impl<N: Clone + BaseNum + Zero + One> Inv for DMat<N> {
|
||||
|
||||
impl<N: Clone> Transpose for DMat<N> {
|
||||
#[inline]
|
||||
fn transpose_cpy(m: &DMat<N>) -> DMat<N> {
|
||||
if m.nrows == m.ncols {
|
||||
let mut res = m.clone();
|
||||
fn transpose_cpy(&self) -> DMat<N> {
|
||||
if self.nrows == self.ncols {
|
||||
let mut res = self.clone();
|
||||
|
||||
res.transpose();
|
||||
|
||||
res
|
||||
}
|
||||
else {
|
||||
let mut res = unsafe { DMat::new_uninitialized(m.ncols, m.nrows) };
|
||||
let mut res = unsafe { DMat::new_uninitialized(self.ncols, self.nrows) };
|
||||
|
||||
for i in range(0u, m.nrows) {
|
||||
for j in range(0u, m.ncols) {
|
||||
for i in range(0u, self.nrows) {
|
||||
for j in range(0u, self.ncols) {
|
||||
unsafe {
|
||||
res.unsafe_set((j, i), m.unsafe_at((i, j)))
|
||||
res.unsafe_set((j, i), self.unsafe_at((i, j)))
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -487,14 +486,14 @@ impl<N: Clone> Transpose for DMat<N> {
|
||||
}
|
||||
|
||||
impl<N: BaseNum + Cast<f64> + Zero + Clone> Mean<DVec<N>> for DMat<N> {
|
||||
fn mean(m: &DMat<N>) -> DVec<N> {
|
||||
let mut res: DVec<N> = DVec::new_zeros(m.ncols);
|
||||
let normalizer: N = Cast::from(1.0f64 / Cast::from(m.nrows));
|
||||
fn mean(&self) -> DVec<N> {
|
||||
let mut res: DVec<N> = DVec::new_zeros(self.ncols);
|
||||
let normalizer: N = Cast::from(1.0f64 / Cast::from(self.nrows));
|
||||
|
||||
for i in range(0u, m.nrows) {
|
||||
for j in range(0u, m.ncols) {
|
||||
for i in range(0u, self.nrows) {
|
||||
for j in range(0u, self.ncols) {
|
||||
unsafe {
|
||||
let acc = res.unsafe_at(j) + m.unsafe_at((i, j)) * normalizer;
|
||||
let acc = res.unsafe_at(j) + self.unsafe_at((i, j)) * normalizer;
|
||||
res.unsafe_set(j, acc);
|
||||
}
|
||||
}
|
||||
@ -506,23 +505,23 @@ impl<N: BaseNum + Cast<f64> + Zero + Clone> Mean<DVec<N>> for DMat<N> {
|
||||
|
||||
impl<N: Clone + BaseNum + Cast<f64> + Div<N, N>> Cov<DMat<N>> for DMat<N> {
|
||||
// FIXME: this could be heavily optimized, removing all temporaries by merging loops.
|
||||
fn cov(m: &DMat<N>) -> DMat<N> {
|
||||
assert!(m.nrows > 1);
|
||||
fn cov(&self) -> DMat<N> {
|
||||
assert!(self.nrows > 1);
|
||||
|
||||
let mut centered = unsafe { DMat::new_uninitialized(m.nrows, m.ncols) };
|
||||
let mean = Mean::mean(m);
|
||||
let mut centered = unsafe { DMat::new_uninitialized(self.nrows, self.ncols) };
|
||||
let mean = self.mean();
|
||||
|
||||
// FIXME: use the rows iterator when available
|
||||
for i in range(0u, m.nrows) {
|
||||
for j in range(0u, m.ncols) {
|
||||
for i in range(0u, self.nrows) {
|
||||
for j in range(0u, self.ncols) {
|
||||
unsafe {
|
||||
centered.unsafe_set((i, j), m.unsafe_at((i, j)) - mean.unsafe_at(j));
|
||||
centered.unsafe_set((i, j), self.unsafe_at((i, j)) - mean.unsafe_at(j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: return a triangular matrix?
|
||||
let fnormalizer: f64 = Cast::from(m.nrows() - 1);
|
||||
let fnormalizer: f64 = Cast::from(self.nrows() - 1);
|
||||
let normalizer: N = Cast::from(fnormalizer);
|
||||
// FIXME: this will do 2 allocations for temporaries!
|
||||
(Transpose::transpose_cpy(¢ered) * centered) / normalizer
|
||||
@ -604,16 +603,8 @@ impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(a: &DMat<N>, b: &DMat<N>) -> bool {
|
||||
let zip = a.mij.iter().zip(b.mij.iter());
|
||||
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq(a, b))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &DMat<N>, b: &DMat<N>, epsilon: &N) -> bool {
|
||||
let zip = a.mij.iter().zip(b.mij.iter());
|
||||
|
||||
fn approx_eq_eps(&self, other: &DMat<N>, epsilon: &N) -> bool {
|
||||
let zip = self.mij.iter().zip(other.mij.iter());
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
|
||||
}
|
||||
}
|
||||
|
@ -217,36 +217,26 @@ macro_rules! dvec_impl(
|
||||
|
||||
impl<N: BaseNum + Clone> Dot<N> for $dvec<N> {
|
||||
#[inline]
|
||||
fn dot(a: &$dvec<N>, b: &$dvec<N>) -> N {
|
||||
assert!(a.len() == b.len());
|
||||
|
||||
fn dot(&self, other: &$dvec<N>) -> N {
|
||||
assert!(self.len() == other.len());
|
||||
let mut res: N = ::zero();
|
||||
|
||||
for i in range(0u, a.len()) {
|
||||
res = res + unsafe { a.unsafe_at(i) * b.unsafe_at(i) };
|
||||
for i in range(0u, self.len()) {
|
||||
res = res + unsafe { self.unsafe_at(i) * other.unsafe_at(i) };
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseFloat + Clone> Norm<N> for $dvec<N> {
|
||||
#[inline]
|
||||
fn sqnorm(v: &$dvec<N>) -> N {
|
||||
Dot::dot(v, v)
|
||||
fn sqnorm(&self) -> N {
|
||||
Dot::dot(self, self)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm(v: &$dvec<N>) -> N {
|
||||
Norm::sqnorm(v).sqrt()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn normalize_cpy(v: &$dvec<N>) -> $dvec<N> {
|
||||
let mut res : $dvec<N> = v.clone();
|
||||
|
||||
fn normalize_cpy(&self) -> $dvec<N> {
|
||||
let mut res : $dvec<N> = self.clone();
|
||||
let _ = res.normalize();
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
@ -269,16 +259,8 @@ macro_rules! dvec_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(a: &$dvec<N>, b: &$dvec<N>) -> bool {
|
||||
let zip = a.as_slice().iter().zip(b.as_slice().iter());
|
||||
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq(a, b))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &$dvec<N>, b: &$dvec<N>, epsilon: &N) -> bool {
|
||||
let zip = a.as_slice().iter().zip(b.as_slice().iter());
|
||||
|
||||
fn approx_eq_eps(&self, other: &$dvec<N>, epsilon: &N) -> bool {
|
||||
let zip = self.as_slice().iter().zip(other.as_slice().iter());
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
|
||||
}
|
||||
}
|
||||
|
@ -113,8 +113,8 @@ macro_rules! translation_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_translation_cpy(iso: &$t<N>, t: &$tv<N>) -> $t<N> {
|
||||
$t::new_with_rotmat(*t + iso.translation, iso.rotation.clone())
|
||||
fn append_translation_cpy(&self, t: &$tv<N>) -> $t<N> {
|
||||
$t::new_with_rotmat(*t + self.translation, self.rotation.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -123,8 +123,8 @@ macro_rules! translation_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_translation_cpy(iso: &$t<N>, t: &$tv<N>) -> $t<N> {
|
||||
$t::new_with_rotmat(iso.translation + iso.rotation * *t, iso.rotation.clone())
|
||||
fn prepend_translation_cpy(&self, t: &$tv<N>) -> $t<N> {
|
||||
$t::new_with_rotmat(self.translation + self.rotation * *t, self.rotation.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -173,10 +173,10 @@ macro_rules! rotation_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation_cpy(t: &$t<N>, rot: &$tav<N>) -> $t<N> {
|
||||
fn append_rotation_cpy(&self, rot: &$tav<N>) -> $t<N> {
|
||||
let delta = $trot::new(rot.clone());
|
||||
|
||||
$t::new_with_rotmat(delta * t.translation, delta * t.rotation)
|
||||
$t::new_with_rotmat(delta * self.translation, delta * self.rotation)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -187,10 +187,10 @@ macro_rules! rotation_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation_cpy(t: &$t<N>, rot: &$tav<N>) -> $t<N> {
|
||||
fn prepend_rotation_cpy(&self, rot: &$tav<N>) -> $t<N> {
|
||||
let delta = $trot::new(rot.clone());
|
||||
|
||||
$t::new_with_rotmat(t.translation.clone(), t.rotation * delta)
|
||||
$t::new_with_rotmat(self.translation.clone(), self.rotation * delta)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -234,16 +234,16 @@ macro_rules! transformation_impl(
|
||||
*self = *t * *self
|
||||
}
|
||||
|
||||
fn append_transformation_cpy(iso: &$t<N>, t: &$t<N>) -> $t<N> {
|
||||
*t * *iso
|
||||
fn append_transformation_cpy(&self, t: &$t<N>) -> $t<N> {
|
||||
*t * *self
|
||||
}
|
||||
|
||||
fn prepend_transformation(&mut self, t: &$t<N>) {
|
||||
*self = *self * *t
|
||||
}
|
||||
|
||||
fn prepend_transformation_cpy(iso: &$t<N>, t: &$t<N>) -> $t<N> {
|
||||
*iso * *t
|
||||
fn prepend_transformation_cpy(&self, t: &$t<N>) -> $t<N> {
|
||||
*self * *t
|
||||
}
|
||||
|
||||
fn set_transformation(&mut self, t: $t<N>) {
|
||||
@ -276,17 +276,14 @@ macro_rules! inv_impl(
|
||||
fn inv(&mut self) -> bool {
|
||||
self.rotation.inv();
|
||||
self.translation = self.rotation * -self.translation;
|
||||
|
||||
// always succeed
|
||||
true
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inv_cpy(m: &$t<N>) -> Option<$t<N>> {
|
||||
let mut res = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<$t<N>> {
|
||||
let mut res = self.clone();
|
||||
res.inv();
|
||||
|
||||
// always succeed
|
||||
Some(res)
|
||||
}
|
||||
@ -320,15 +317,9 @@ macro_rules! approx_eq_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
ApproxEq::approx_eq(&a.rotation, &b.rotation) &&
|
||||
ApproxEq::approx_eq(&a.translation, &b.translation)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &$t<N>, b: &$t<N>, epsilon: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&a.rotation, &b.rotation, epsilon) &&
|
||||
ApproxEq::approx_eq_eps(&a.translation, &b.translation, epsilon)
|
||||
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&self.rotation, &other.rotation, epsilon) &&
|
||||
ApproxEq::approx_eq_eps(&self.translation, &other.translation, epsilon)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
@ -513,9 +513,8 @@ macro_rules! inv_impl(
|
||||
impl<N: Clone + BaseNum>
|
||||
Inv for $t<N> {
|
||||
#[inline]
|
||||
fn inv_cpy(m: &$t<N>) -> Option<$t<N>> {
|
||||
let mut res : $t<N> = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<$t<N>> {
|
||||
let mut res : $t<N> = self.clone();
|
||||
if res.inv() {
|
||||
Some(res)
|
||||
}
|
||||
@ -596,11 +595,9 @@ macro_rules! transpose_impl(
|
||||
($t: ident, $dim: expr) => (
|
||||
impl<N: Clone> Transpose for $t<N> {
|
||||
#[inline]
|
||||
fn transpose_cpy(m: &$t<N>) -> $t<N> {
|
||||
let mut res = m.clone();
|
||||
|
||||
fn transpose_cpy(&self) -> $t<N> {
|
||||
let mut res = self.clone();
|
||||
res.transpose();
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
@ -625,16 +622,8 @@ macro_rules! approx_eq_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
let zip = a.iter().zip(b.iter());
|
||||
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq(a, b))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &$t<N>, b: &$t<N>, epsilon: &N) -> bool {
|
||||
let zip = a.iter().zip(b.iter());
|
||||
|
||||
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool {
|
||||
let zip = self.iter().zip(other.iter());
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
|
||||
}
|
||||
}
|
||||
@ -686,15 +675,13 @@ macro_rules! outer_impl(
|
||||
($t: ident, $m: ident) => (
|
||||
impl<N: Clone + Mul<N, N> + Zero> Outer<$m<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn outer(a: &$t<N>, b: &$t<N>) -> $m<N> {
|
||||
fn outer(&self, other: &$t<N>) -> $m<N> {
|
||||
let mut res: $m<N> = ::zero();
|
||||
|
||||
for i in range(0u, Dim::dim(None::<$t<N>>)) {
|
||||
for j in range(0u, Dim::dim(None::<$t<N>>)) {
|
||||
res.set((i, j), a.at(i) * b.at(j))
|
||||
res.set((i, j), self.at(i) * other.at(j))
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
@ -705,8 +692,8 @@ macro_rules! eigen_qr_impl(
|
||||
($t: ident, $v: ident) => (
|
||||
impl<N> EigenQR<N, $v<N>> for $t<N>
|
||||
where N: BaseNum + One + Zero + BaseFloat + ApproxEq<N> + Clone {
|
||||
fn eigen_qr(m: &$t<N>, eps: &N, niter: uint) -> ($t<N>, $v<N>) {
|
||||
linalg::eigen_qr(m, eps, niter)
|
||||
fn eigen_qr(&self, eps: &N, niter: uint) -> ($t<N>, $v<N>) {
|
||||
linalg::eigen_qr(self, eps, niter)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
@ -66,9 +66,8 @@ impl<N: Neg<N>> Quat<N> {
|
||||
|
||||
impl<N: BaseFloat + ApproxEq<N> + Clone> Inv for Quat<N> {
|
||||
#[inline]
|
||||
fn inv_cpy(m: &Quat<N>) -> Option<Quat<N>> {
|
||||
let mut res = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<Quat<N>> {
|
||||
let mut res = self.clone();
|
||||
if res.inv() {
|
||||
Some(res)
|
||||
}
|
||||
@ -98,14 +97,14 @@ impl<N: BaseFloat + ApproxEq<N> + Clone> Inv for Quat<N> {
|
||||
|
||||
impl<N: BaseFloat> Norm<N> for Quat<N> {
|
||||
#[inline]
|
||||
fn sqnorm(q: &Quat<N>) -> N {
|
||||
q.w * q.w + q.i * q.i + q.j * q.j + q.k * q.k
|
||||
fn sqnorm(&self) -> N {
|
||||
self.w * self.w + self.i * self.i + self.j * self.j + self.k * self.k
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn normalize_cpy(v: &Quat<N>) -> Quat<N> {
|
||||
let n = Norm::norm(v);
|
||||
Quat::new(v.w / n, v.i / n, v.j / n, v.k / n)
|
||||
fn normalize_cpy(&self) -> Quat<N> {
|
||||
let n = self.norm();
|
||||
Quat::new(self.w / n, self.i / n, self.j / n, self.k / n)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -261,9 +260,8 @@ impl<N: BaseNum + Clone> One for UnitQuat<N> {
|
||||
|
||||
impl<N: Clone + Neg<N>> Inv for UnitQuat<N> {
|
||||
#[inline]
|
||||
fn inv_cpy(m: &UnitQuat<N>) -> Option<UnitQuat<N>> {
|
||||
let mut cpy = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<UnitQuat<N>> {
|
||||
let mut cpy = self.clone();
|
||||
cpy.inv();
|
||||
Some(cpy)
|
||||
}
|
||||
@ -290,13 +288,8 @@ impl<N: ApproxEq<N>> ApproxEq<N> for UnitQuat<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(a: &UnitQuat<N>, b: &UnitQuat<N>) -> bool {
|
||||
ApproxEq::approx_eq(&a.q, &b.q)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &UnitQuat<N>, b: &UnitQuat<N>, eps: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&a.q, &b.q, eps)
|
||||
fn approx_eq_eps(&self, other: &UnitQuat<N>, eps: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&self.q, &other.q, eps)
|
||||
}
|
||||
}
|
||||
|
||||
@ -379,8 +372,8 @@ impl<N: BaseFloat + Clone> Rotation<Vec3<N>> for UnitQuat<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation_cpy(t: &UnitQuat<N>, amount: &Vec3<N>) -> UnitQuat<N> {
|
||||
*t * UnitQuat::new(amount.clone())
|
||||
fn append_rotation_cpy(&self, amount: &Vec3<N>) -> UnitQuat<N> {
|
||||
*self * UnitQuat::new(amount.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -389,8 +382,8 @@ impl<N: BaseFloat + Clone> Rotation<Vec3<N>> for UnitQuat<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation_cpy(t: &UnitQuat<N>, amount: &Vec3<N>) -> UnitQuat<N> {
|
||||
UnitQuat::new(amount.clone()) * *t
|
||||
fn prepend_rotation_cpy(&self, amount: &Vec3<N>) -> UnitQuat<N> {
|
||||
UnitQuat::new(amount.clone()) * *self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -46,8 +46,8 @@ impl<N: BaseFloat + Clone> Rotation<Vec1<N>> for Rot2<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation_cpy(t: &Rot2<N>, rot: &Vec1<N>) -> Rot2<N> {
|
||||
Rot2::new(rot.clone()) * *t
|
||||
fn append_rotation_cpy(&self, rot: &Vec1<N>) -> Rot2<N> {
|
||||
Rot2::new(rot.clone()) * *self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -56,8 +56,8 @@ impl<N: BaseFloat + Clone> Rotation<Vec1<N>> for Rot2<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation_cpy(t: &Rot2<N>, rot: &Vec1<N>) -> Rot2<N> {
|
||||
*t * Rot2::new(rot.clone())
|
||||
fn prepend_rotation_cpy(&self, rot: &Vec1<N>) -> Rot2<N> {
|
||||
*self * Rot2::new(rot.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -249,8 +249,8 @@ Rotation<Vec3<N>> for Rot3<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation_cpy(t: &Rot3<N>, axisangle: &Vec3<N>) -> Rot3<N> {
|
||||
Rot3::new(axisangle.clone()) * *t
|
||||
fn append_rotation_cpy(&self, axisangle: &Vec3<N>) -> Rot3<N> {
|
||||
Rot3::new(axisangle.clone()) * *self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -259,8 +259,8 @@ Rotation<Vec3<N>> for Rot3<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation_cpy(t: &Rot3<N>, axisangle: &Vec3<N>) -> Rot3<N> {
|
||||
*t * Rot3::new(axisangle.clone())
|
||||
fn prepend_rotation_cpy(&self, axisangle: &Vec3<N>) -> Rot3<N> {
|
||||
*self * Rot3::new(axisangle.clone())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -351,7 +351,7 @@ Rotation<Vec4<N>> for Rot4<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation_cpy(_: &Rot4<N>, _: &Vec4<N>) -> Rot4<N> {
|
||||
fn append_rotation_cpy(&self, _: &Vec4<N>) -> Rot4<N> {
|
||||
panic!("Not yet implemented")
|
||||
}
|
||||
|
||||
@ -361,7 +361,7 @@ Rotation<Vec4<N>> for Rot4<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation_cpy(_: &Rot4<N>, _: &Vec4<N>) -> Rot4<N> {
|
||||
fn prepend_rotation_cpy(&self, _: &Vec4<N>) -> Rot4<N> {
|
||||
panic!("Not yet implemented")
|
||||
}
|
||||
|
||||
|
@ -157,9 +157,9 @@ macro_rules! inv_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inv_cpy(m: &$t<N>) -> Option<$t<N>> {
|
||||
fn inv_cpy(&self) -> Option<$t<N>> {
|
||||
// always succeed
|
||||
Some(Transpose::transpose_cpy(m))
|
||||
Some(self.transpose_cpy())
|
||||
}
|
||||
}
|
||||
)
|
||||
@ -169,8 +169,8 @@ macro_rules! transpose_impl(
|
||||
($t: ident) => (
|
||||
impl<N: Clone> Transpose for $t<N> {
|
||||
#[inline]
|
||||
fn transpose_cpy(m: &$t<N>) -> $t<N> {
|
||||
$t { submat: Transpose::transpose_cpy(&m.submat) }
|
||||
fn transpose_cpy(&self) -> $t<N> {
|
||||
$t { submat: Transpose::transpose_cpy(&self.submat) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -257,13 +257,13 @@ macro_rules! approx_eq_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
ApproxEq::approx_eq(&a.submat, &b.submat)
|
||||
fn approx_eq(&self, other: &$t<N>) -> bool {
|
||||
ApproxEq::approx_eq(&self.submat, &other.submat)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &$t<N>, b: &$t<N>, epsilon: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&a.submat, &b.submat, epsilon)
|
||||
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&self.submat, &other.submat, epsilon)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
@ -12,7 +12,7 @@ impl One for mat::Identity {
|
||||
}
|
||||
|
||||
impl Inv for mat::Identity {
|
||||
fn inv_cpy(_: &mat::Identity) -> Option<mat::Identity> {
|
||||
fn inv_cpy(&self) -> Option<mat::Identity> {
|
||||
Some(mat::Identity::new())
|
||||
}
|
||||
|
||||
@ -30,7 +30,7 @@ impl<T: Clone> Mul<T, T> for mat::Identity {
|
||||
|
||||
impl Transpose for mat::Identity {
|
||||
#[inline]
|
||||
fn transpose_cpy(_: &mat::Identity) -> mat::Identity {
|
||||
fn transpose_cpy(&self) -> mat::Identity {
|
||||
mat::Identity::new()
|
||||
}
|
||||
|
||||
@ -56,7 +56,7 @@ impl<V: Zero> Translation<V> for mat::Identity {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_translation_cpy(_: &mat::Identity, _: &V) -> mat::Identity {
|
||||
fn append_translation_cpy(&self, _: &V) -> mat::Identity {
|
||||
panic!("Attempted to translate the identity matrix.")
|
||||
}
|
||||
|
||||
@ -66,7 +66,7 @@ impl<V: Zero> Translation<V> for mat::Identity {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_translation_cpy(_: &mat::Identity, _: &V) -> mat::Identity {
|
||||
fn prepend_translation_cpy(&self, _: &V) -> mat::Identity {
|
||||
panic!("Attempted to translate the identity matrix.")
|
||||
}
|
||||
|
||||
@ -105,7 +105,7 @@ impl<V: Zero> Rotation<V> for mat::Identity {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation_cpy(_: &mat::Identity, _: &V) -> mat::Identity {
|
||||
fn append_rotation_cpy(&self, _: &V) -> mat::Identity {
|
||||
panic!("Attempted to rotate the identity matrix.")
|
||||
}
|
||||
|
||||
@ -115,7 +115,7 @@ impl<V: Zero> Rotation<V> for mat::Identity {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation_cpy(_: &mat::Identity, _: &V) -> mat::Identity {
|
||||
fn prepend_rotation_cpy(&self, _: &V) -> mat::Identity {
|
||||
panic!("Attempted to rotate the identity matrix.")
|
||||
}
|
||||
|
||||
@ -161,7 +161,7 @@ impl<M: One> Transformation<M> for mat::Identity {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_transformation_cpy(_: &mat::Identity, _: &M) -> mat::Identity {
|
||||
fn append_transformation_cpy(&self, _: &M) -> mat::Identity {
|
||||
panic!("Attempted to transform the identity matrix.")
|
||||
}
|
||||
|
||||
@ -171,7 +171,7 @@ impl<M: One> Transformation<M> for mat::Identity {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_transformation_cpy(_: &mat::Identity, _: &M) -> mat::Identity {
|
||||
fn prepend_transformation_cpy(&self, _: &M) -> mat::Identity {
|
||||
panic!("Attempted to transform the identity matrix.")
|
||||
}
|
||||
|
||||
|
@ -7,9 +7,8 @@ use traits::structure::{Row, Col, BaseNum};
|
||||
// some specializations:
|
||||
impl<N: BaseNum + ApproxEq<N> + Clone> Inv for Mat1<N> {
|
||||
#[inline]
|
||||
fn inv_cpy(m: &Mat1<N>) -> Option<Mat1<N>> {
|
||||
let mut res = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<Mat1<N>> {
|
||||
let mut res = self.clone();
|
||||
if res.inv() {
|
||||
Some(res)
|
||||
}
|
||||
@ -34,9 +33,8 @@ impl<N: BaseNum + ApproxEq<N> + Clone> Inv for Mat1<N> {
|
||||
|
||||
impl<N: BaseNum + ApproxEq<N> + Clone> Inv for Mat2<N> {
|
||||
#[inline]
|
||||
fn inv_cpy(m: &Mat2<N>) -> Option<Mat2<N>> {
|
||||
let mut res = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<Mat2<N>> {
|
||||
let mut res = self.clone();
|
||||
if res.inv() {
|
||||
Some(res)
|
||||
}
|
||||
@ -64,9 +62,8 @@ impl<N: BaseNum + ApproxEq<N> + Clone> Inv for Mat2<N> {
|
||||
|
||||
impl<N: BaseNum + ApproxEq<N> + Clone> Inv for Mat3<N> {
|
||||
#[inline]
|
||||
fn inv_cpy(m: &Mat3<N>) -> Option<Mat3<N>> {
|
||||
let mut res = m.clone();
|
||||
|
||||
fn inv_cpy(&self) -> Option<Mat3<N>> {
|
||||
let mut res = self.clone();
|
||||
if res.inv() {
|
||||
Some(res)
|
||||
}
|
||||
@ -108,26 +105,26 @@ impl<N: BaseNum + ApproxEq<N> + Clone> Inv for Mat3<N> {
|
||||
|
||||
impl<N: BaseNum + Clone> Det<N> for Mat1<N> {
|
||||
#[inline]
|
||||
fn det(m: &Mat1<N>) -> N {
|
||||
m.m11.clone()
|
||||
fn det(&self) -> N {
|
||||
self.m11.clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseNum> Det<N> for Mat2<N> {
|
||||
#[inline]
|
||||
fn det(m: &Mat2<N>) -> N {
|
||||
m.m11 * m.m22 - m.m21 * m.m12
|
||||
fn det(&self) -> N {
|
||||
self.m11 * self.m22 - self.m21 * self.m12
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseNum> Det<N> for Mat3<N> {
|
||||
#[inline]
|
||||
fn det(m: &Mat3<N>) -> N {
|
||||
let minor_m12_m23 = m.m22 * m.m33 - m.m32 * m.m23;
|
||||
let minor_m11_m23 = m.m21 * m.m33 - m.m31 * m.m23;
|
||||
let minor_m11_m22 = m.m21 * m.m32 - m.m31 * m.m22;
|
||||
fn det(&self) -> N {
|
||||
let minor_m12_m23 = self.m22 * self.m33 - self.m32 * self.m23;
|
||||
let minor_m11_m23 = self.m21 * self.m33 - self.m31 * self.m23;
|
||||
let minor_m11_m22 = self.m21 * self.m32 - self.m31 * self.m22;
|
||||
|
||||
m.m11 * minor_m12_m23 - m.m12 * minor_m11_m23 + m.m13 * minor_m11_m22
|
||||
self.m11 * minor_m12_m23 - self.m12 * minor_m11_m23 + self.m13 * minor_m11_m22
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5,37 +5,37 @@ use structs::mat::Mat3;
|
||||
|
||||
impl<N: Mul<N, N> + Sub<N, N>> Cross<Vec1<N>> for Vec2<N> {
|
||||
#[inline]
|
||||
fn cross(a: &Vec2<N>, b: &Vec2<N>) -> Vec1<N> {
|
||||
Vec1::new(a.x * b.y - a.y * b.x)
|
||||
fn cross(&self, other: &Vec2<N>) -> Vec1<N> {
|
||||
Vec1::new(self.x * other.y - self.y * other.x)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: instead of returning a Vec2, define a Mat2x1 matrix?
|
||||
impl<N: Neg<N> + Clone> CrossMatrix<Vec2<N>> for Vec2<N> {
|
||||
#[inline]
|
||||
fn cross_matrix(v: &Vec2<N>) -> Vec2<N> {
|
||||
Vec2::new(-v.y, v.x.clone())
|
||||
fn cross_matrix(&self) -> Vec2<N> {
|
||||
Vec2::new(-self.y, self.x.clone())
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Mul<N, N> + Sub<N, N>> Cross<Vec3<N>> for Vec3<N> {
|
||||
#[inline]
|
||||
fn cross(a: &Vec3<N>, b: &Vec3<N>) -> Vec3<N> {
|
||||
fn cross(&self, other: &Vec3<N>) -> Vec3<N> {
|
||||
Vec3::new(
|
||||
a.y * b.z - a.z * b.y,
|
||||
a.z * b.x - a.x * b.z,
|
||||
a.x * b.y - a.y * b.x
|
||||
self.y * other.z - self.z * other.y,
|
||||
self.z * other.x - self.x * other.z,
|
||||
self.x * other.y - self.y * other.x
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Neg<N> + Zero + Clone> CrossMatrix<Mat3<N>> for Vec3<N> {
|
||||
#[inline]
|
||||
fn cross_matrix(v: &Vec3<N>) -> Mat3<N> {
|
||||
fn cross_matrix(&self) -> Mat3<N> {
|
||||
Mat3::new(
|
||||
::zero(), -v.z , v.y.clone(),
|
||||
v.z.clone() , ::zero(), -v.x,
|
||||
-v.y , v.x.clone() , ::zero()
|
||||
::zero(), -self.z, self.y.clone(),
|
||||
self.z.clone(), ::zero(), -self.x,
|
||||
-self.y, self.x.clone(), ::zero()
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -121,7 +121,7 @@ impl<N: Neg<N>> Neg<vec::Vec0<N>> for vec::Vec0<N> {
|
||||
|
||||
impl<N: BaseNum> Dot<N> for vec::Vec0<N> {
|
||||
#[inline]
|
||||
fn dot(_: &vec::Vec0<N>, _: &vec::Vec0<N>) -> N {
|
||||
fn dot(&self, _: &vec::Vec0<N>) -> N {
|
||||
::zero()
|
||||
}
|
||||
}
|
||||
@ -157,8 +157,8 @@ impl<N: Clone + Add<N, N> + Neg<N>> Translation<vec::Vec0<N>> for vec::Vec0<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_translation_cpy(vec: &vec::Vec0<N>, t: &vec::Vec0<N>) -> vec::Vec0<N> {
|
||||
*t + vec
|
||||
fn append_translation_cpy(&self, t: &vec::Vec0<N>) -> vec::Vec0<N> {
|
||||
*t + self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -167,8 +167,8 @@ impl<N: Clone + Add<N, N> + Neg<N>> Translation<vec::Vec0<N>> for vec::Vec0<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_translation_cpy(vec: &vec::Vec0<N>, t: &vec::Vec0<N>) -> vec::Vec0<N> {
|
||||
*vec + *t
|
||||
fn prepend_translation_cpy(&self, t: &vec::Vec0<N>) -> vec::Vec0<N> {
|
||||
*self + *t
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -178,17 +178,17 @@ impl<N: Clone + Add<N, N> + Neg<N>> Translation<vec::Vec0<N>> for vec::Vec0<N> {
|
||||
|
||||
impl<N: BaseFloat> Norm<N> for vec::Vec0<N> {
|
||||
#[inline]
|
||||
fn sqnorm(_: &vec::Vec0<N>) -> N {
|
||||
fn sqnorm(&self) -> N {
|
||||
::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm(_: &vec::Vec0<N>) -> N {
|
||||
fn norm(&self) -> N {
|
||||
::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn normalize_cpy(_: &vec::Vec0<N>) -> vec::Vec0<N> {
|
||||
fn normalize_cpy(&self) -> vec::Vec0<N> {
|
||||
::zero()
|
||||
}
|
||||
|
||||
@ -205,12 +205,7 @@ impl<N: ApproxEq<N>> ApproxEq<N> for vec::Vec0<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(_: &vec::Vec0<N>, _: &vec::Vec0<N>) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(_: &vec::Vec0<N>, _: &vec::Vec0<N>, _: &N) -> bool {
|
||||
fn approx_eq_eps(&self, _: &vec::Vec0<N>, _: &N) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
@ -82,26 +82,26 @@ macro_rules! ord_impl(
|
||||
($t: ident, $comp0: ident $(,$compN: ident)*) => (
|
||||
impl<N: BaseFloat + Clone> POrd for $t<N> {
|
||||
#[inline]
|
||||
fn inf(a: &$t<N>, b: &$t<N>) -> $t<N> {
|
||||
$t::new(a.$comp0.min(b.$comp0.clone())
|
||||
$(, a.$compN.min(b.$compN))*)
|
||||
fn inf(&self, other: &$t<N>) -> $t<N> {
|
||||
$t::new(self.$comp0.min(other.$comp0.clone())
|
||||
$(, self.$compN.min(other.$compN))*)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sup(a: &$t<N>, b: &$t<N>) -> $t<N> {
|
||||
$t::new(a.$comp0.max(b.$comp0.clone())
|
||||
$(, a.$compN.max(b.$compN.clone()))*)
|
||||
fn sup(&self, other: &$t<N>) -> $t<N> {
|
||||
$t::new(self.$comp0.max(other.$comp0.clone())
|
||||
$(, self.$compN.max(other.$compN.clone()))*)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(unused_mut)] // otherwise there will be a warning for is_eq or Vec1.
|
||||
fn partial_cmp(a: &$t<N>, b: &$t<N>) -> POrdering {
|
||||
let is_lt = a.$comp0 < b.$comp0;
|
||||
let mut is_eq = a.$comp0 == b.$comp0;
|
||||
fn partial_cmp(&self, other: &$t<N>) -> POrdering {
|
||||
let is_lt = self.$comp0 < other.$comp0;
|
||||
let mut is_eq = self.$comp0 == other.$comp0;
|
||||
|
||||
if is_lt { // <
|
||||
$(
|
||||
if a.$compN > b.$compN {
|
||||
if self.$compN > other.$compN {
|
||||
return POrdering::NotComparable
|
||||
}
|
||||
)*
|
||||
@ -110,10 +110,10 @@ macro_rules! ord_impl(
|
||||
}
|
||||
else { // >=
|
||||
$(
|
||||
if a.$compN < b.$compN {
|
||||
if self.$compN < other.$compN {
|
||||
return POrdering::NotComparable
|
||||
}
|
||||
else if a.$compN > b.$compN {
|
||||
else if self.$compN > other.$compN {
|
||||
is_eq = false;
|
||||
}
|
||||
|
||||
@ -129,23 +129,23 @@ macro_rules! ord_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn partial_lt(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
a.$comp0 < b.$comp0 $(&& a.$compN < b.$compN)*
|
||||
fn partial_lt(&self, other: &$t<N>) -> bool {
|
||||
self.$comp0 < other.$comp0 $(&& self.$compN < other.$compN)*
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn partial_le(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
a.$comp0 <= b.$comp0 $(&& a.$compN <= b.$compN)*
|
||||
fn partial_le(&self, other: &$t<N>) -> bool {
|
||||
self.$comp0 <= other.$comp0 $(&& self.$compN <= other.$compN)*
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn partial_gt(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
a.$comp0 > b.$comp0 $(&& a.$compN > b.$compN)*
|
||||
fn partial_gt(&self, other: &$t<N>) -> bool {
|
||||
self.$comp0 > other.$comp0 $(&& self.$compN > other.$compN)*
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn partial_ge(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
a.$comp0 >= b.$comp0 $(&& a.$compN >= b.$compN)*
|
||||
fn partial_ge(&self, other: &$t<N>) -> bool {
|
||||
self.$comp0 >= other.$comp0 $(&& self.$compN >= other.$compN)*
|
||||
}
|
||||
}
|
||||
)
|
||||
@ -493,8 +493,8 @@ macro_rules! dot_impl(
|
||||
($t: ident, $comp0: ident $(,$compN: ident)*) => (
|
||||
impl<N: BaseNum> Dot<N> for $t<N> {
|
||||
#[inline]
|
||||
fn dot(a: &$t<N>, b: &$t<N>) -> N {
|
||||
a.$comp0 * b.$comp0 $(+ a.$compN * b.$compN )*
|
||||
fn dot(&self, other: &$t<N>) -> N {
|
||||
self.$comp0 * other.$comp0 $(+ self.$compN * other.$compN )*
|
||||
}
|
||||
}
|
||||
)
|
||||
@ -595,8 +595,8 @@ macro_rules! translation_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_translation_cpy(transform: &$t<N>, t: &$t<N>) -> $t<N> {
|
||||
*t + *transform
|
||||
fn append_translation_cpy(&self, t: &$t<N>) -> $t<N> {
|
||||
*t + *self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -605,8 +605,8 @@ macro_rules! translation_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_translation_cpy(transform: &$t<N>, t: &$t<N>) -> $t<N> {
|
||||
*transform + *t
|
||||
fn prepend_translation_cpy(&self, t: &$t<N>) -> $t<N> {
|
||||
*self + *t
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -621,21 +621,14 @@ macro_rules! norm_impl(
|
||||
($t: ident, $comp0: ident $(,$compN: ident)*) => (
|
||||
impl<N: Clone + BaseFloat> Norm<N> for $t<N> {
|
||||
#[inline]
|
||||
fn sqnorm(v: &$t<N>) -> N {
|
||||
Dot::dot(v, v)
|
||||
fn sqnorm(&self) -> N {
|
||||
Dot::dot(self, self)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm(v: &$t<N>) -> N {
|
||||
Norm::sqnorm(v).sqrt()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn normalize_cpy(v: &$t<N>) -> $t<N> {
|
||||
let mut res : $t<N> = v.clone();
|
||||
|
||||
fn normalize_cpy(&self) -> $t<N> {
|
||||
let mut res : $t<N> = self.clone();
|
||||
let _ = res.normalize();
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
@ -661,15 +654,15 @@ macro_rules! approx_eq_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq(a: &$t<N>, b: &$t<N>) -> bool {
|
||||
ApproxEq::approx_eq(&a.$comp0, &b.$comp0)
|
||||
$(&& ApproxEq::approx_eq(&a.$compN, &b.$compN))*
|
||||
fn approx_eq(&self, other: &$t<N>) -> bool {
|
||||
ApproxEq::approx_eq(&self.$comp0, &other.$comp0)
|
||||
$(&& ApproxEq::approx_eq(&self.$compN, &other.$compN))*
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &$t<N>, b: &$t<N>, eps: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&a.$comp0, &b.$comp0, eps)
|
||||
$(&& ApproxEq::approx_eq_eps(&a.$compN, &b.$compN, eps))*
|
||||
fn approx_eq_eps(&self, other: &$t<N>, eps: &N) -> bool {
|
||||
ApproxEq::approx_eq_eps(&self.$comp0, &other.$comp0, eps)
|
||||
$(&& ApproxEq::approx_eq_eps(&self.$compN, &other.$compN, eps))*
|
||||
}
|
||||
}
|
||||
)
|
||||
|
@ -17,13 +17,13 @@ pub trait Translation<V> {
|
||||
fn append_translation(&mut self, &V);
|
||||
|
||||
/// Appends the translation `amount` to a copy of `t`.
|
||||
fn append_translation_cpy(t: &Self, amount: &V) -> Self;
|
||||
fn append_translation_cpy(&self, amount: &V) -> Self;
|
||||
|
||||
/// Prepends a translation to this object.
|
||||
fn prepend_translation(&mut self, &V);
|
||||
|
||||
/// Prepends the translation `amount` to a copy of `t`.
|
||||
fn prepend_translation_cpy(t: &Self, amount: &V) -> Self;
|
||||
fn prepend_translation_cpy(&self, amount: &V) -> Self;
|
||||
|
||||
/// Sets the translation.
|
||||
fn set_translation(&mut self, V);
|
||||
@ -52,13 +52,13 @@ pub trait Rotation<V> {
|
||||
fn append_rotation(&mut self, &V);
|
||||
|
||||
/// Appends the rotation `amount` to a copy of `t`.
|
||||
fn append_rotation_cpy(t: &Self, amount: &V) -> Self;
|
||||
fn append_rotation_cpy(&self, amount: &V) -> Self;
|
||||
|
||||
/// Prepends a rotation to this object.
|
||||
fn prepend_rotation(&mut self, &V);
|
||||
|
||||
/// Prepends the rotation `amount` to a copy of `t`.
|
||||
fn prepend_rotation_cpy(t: &Self, amount: &V) -> Self;
|
||||
fn prepend_rotation_cpy(&self, amount: &V) -> Self;
|
||||
|
||||
/// Sets the rotation of `self`.
|
||||
fn set_rotation(&mut self, V);
|
||||
@ -90,8 +90,8 @@ pub trait RotationWithTranslation<LV: Neg<LV>, AV>: Rotation<AV> + Translation<L
|
||||
/// * `amount` - the rotation to apply.
|
||||
/// * `point` - the center of rotation.
|
||||
#[inline]
|
||||
fn append_rotation_wrt_point_cpy(t: &Self, amount: &AV, center: &LV) -> Self {
|
||||
let mut res = Translation::append_translation_cpy(t, &-*center);
|
||||
fn append_rotation_wrt_point_cpy(&self, amount: &AV, center: &LV) -> Self {
|
||||
let mut res = Translation::append_translation_cpy(self, &-*center);
|
||||
|
||||
res.append_rotation(amount);
|
||||
res.append_translation(center);
|
||||
@ -119,8 +119,8 @@ pub trait RotationWithTranslation<LV: Neg<LV>, AV>: Rotation<AV> + Translation<L
|
||||
/// * `t` - the object to be rotated.
|
||||
/// * `amount` - the rotation to apply.
|
||||
#[inline]
|
||||
fn append_rotation_wrt_center_cpy(t: &Self, amount: &AV) -> Self {
|
||||
RotationWithTranslation::append_rotation_wrt_point_cpy(t, amount, &t.translation())
|
||||
fn append_rotation_wrt_center_cpy(&self, amount: &AV) -> Self {
|
||||
RotationWithTranslation::append_rotation_wrt_point_cpy(self, amount, &self.translation())
|
||||
}
|
||||
|
||||
/// Applies a rotation centered on the translation of `m`.
|
||||
@ -174,13 +174,13 @@ pub trait Transformation<M> {
|
||||
fn append_transformation(&mut self, &M);
|
||||
|
||||
/// Appends the transformation `amount` to a copy of `t`.
|
||||
fn append_transformation_cpy(t: &Self, amount: &M) -> Self;
|
||||
fn append_transformation_cpy(&self, amount: &M) -> Self;
|
||||
|
||||
/// Prepends a transformation to this object.
|
||||
fn prepend_transformation(&mut self, &M);
|
||||
|
||||
/// Prepends the transformation `amount` to a copy of `t`.
|
||||
fn prepend_transformation_cpy(t: &Self, amount: &M) -> Self;
|
||||
fn prepend_transformation_cpy(&self, amount: &M) -> Self;
|
||||
|
||||
/// Sets the transformation of `self`.
|
||||
fn set_transformation(&mut self, M);
|
||||
@ -201,24 +201,24 @@ pub trait Transform<V> {
|
||||
pub trait Dot<N> {
|
||||
/// Computes the dot (inner) product of two vectors.
|
||||
#[inline]
|
||||
fn dot(&Self, &Self) -> N;
|
||||
fn dot(&self, other: &Self) -> N;
|
||||
}
|
||||
|
||||
/// Traits of objects having an euclidian norm.
|
||||
pub trait Norm<N: BaseFloat> {
|
||||
/// Computes the norm of `self`.
|
||||
#[inline]
|
||||
fn norm(v: &Self) -> N {
|
||||
Norm::sqnorm(v).sqrt()
|
||||
fn norm(&self) -> N {
|
||||
self.sqnorm().sqrt()
|
||||
}
|
||||
|
||||
/// Computes the squared norm of `self`.
|
||||
///
|
||||
/// This is usually faster than computing the norm itself.
|
||||
fn sqnorm(&Self) -> N;
|
||||
fn sqnorm(&self) -> N;
|
||||
|
||||
/// Gets the normalized version of a copy of `v`.
|
||||
fn normalize_cpy(v: &Self) -> Self;
|
||||
fn normalize_cpy(&self) -> Self;
|
||||
|
||||
/// Normalizes `self`.
|
||||
fn normalize(&mut self) -> N;
|
||||
@ -229,7 +229,7 @@ pub trait Norm<N: BaseFloat> {
|
||||
*/
|
||||
pub trait Cross<V> {
|
||||
/// Computes the cross product between two elements (usually vectors).
|
||||
fn cross(&Self, other: &Self) -> V;
|
||||
fn cross(&self, other: &Self) -> V;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -238,7 +238,7 @@ pub trait Cross<V> {
|
||||
pub trait CrossMatrix<M> {
|
||||
/// The matrix associated to any cross product with this vector. I.e. `v.cross(anything)` =
|
||||
/// `v.cross_matrix().rmul(anything)`.
|
||||
fn cross_matrix(&Self) -> M;
|
||||
fn cross_matrix(&self) -> M;
|
||||
}
|
||||
|
||||
/// Traits of objects which can be put in homogeneous coordinates form.
|
||||
|
@ -71,55 +71,55 @@ impl POrdering {
|
||||
|
||||
/// Pointwise ordering operations.
|
||||
pub trait POrd {
|
||||
/// Returns the infimum of `a` and `b`.
|
||||
fn inf(a: &Self, b: &Self) -> Self;
|
||||
/// Returns the infimum of this value and another
|
||||
fn inf(&self, other: &Self) -> Self;
|
||||
|
||||
/// Returns the supremum of `a` and `b`.
|
||||
fn sup(a: &Self, b: &Self) -> Self;
|
||||
/// Returns the supremum of this value and another
|
||||
fn sup(&self, other: &Self) -> Self;
|
||||
|
||||
/// Compare `a` and `b` using a partial ordering relation.
|
||||
fn partial_cmp(a: &Self, b: &Self) -> POrdering;
|
||||
/// Compare `self` and `other` using a partial ordering relation.
|
||||
fn partial_cmp(&self, other: &Self) -> POrdering;
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
|
||||
/// Returns `true` iff `self` and `other` are comparable and `self <= other`.
|
||||
#[inline]
|
||||
fn partial_le(a: &Self, b: &Self) -> bool {
|
||||
POrd::partial_cmp(a, b).is_le()
|
||||
fn partial_le(&self, other: &Self) -> bool {
|
||||
POrd::partial_cmp(self, other).is_le()
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
|
||||
/// Returns `true` iff `self` and `other` are comparable and `self < other`.
|
||||
#[inline]
|
||||
fn partial_lt(a: &Self, b: &Self) -> bool {
|
||||
POrd::partial_cmp(a, b).is_lt()
|
||||
fn partial_lt(&self, other: &Self) -> bool {
|
||||
POrd::partial_cmp(self, other).is_lt()
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
|
||||
/// Returns `true` iff `self` and `other` are comparable and `self >= other`.
|
||||
#[inline]
|
||||
fn partial_ge(a: &Self, b: &Self) -> bool {
|
||||
POrd::partial_cmp(a, b).is_ge()
|
||||
fn partial_ge(&self, other: &Self) -> bool {
|
||||
POrd::partial_cmp(self, other).is_ge()
|
||||
}
|
||||
|
||||
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
|
||||
/// Returns `true` iff `self` and `other` are comparable and `self > other`.
|
||||
#[inline]
|
||||
fn partial_gt(a: &Self, b: &Self) -> bool {
|
||||
POrd::partial_cmp(a, b).is_gt()
|
||||
fn partial_gt(&self, other: &Self) -> bool {
|
||||
POrd::partial_cmp(self, other).is_gt()
|
||||
}
|
||||
|
||||
/// Return the minimum of `a` and `b` if they are comparable.
|
||||
/// Return the minimum of `self` and `other` if they are comparable.
|
||||
#[inline]
|
||||
fn partial_min<'a>(a: &'a Self, b: &'a Self) -> Option<&'a Self> {
|
||||
match POrd::partial_cmp(a, b) {
|
||||
POrdering::PartialLess | POrdering::PartialEqual => Some(a),
|
||||
POrdering::PartialGreater => Some(b),
|
||||
fn partial_min<'a>(&'a self, other: &'a Self) -> Option<&'a Self> {
|
||||
match POrd::partial_cmp(self, other) {
|
||||
POrdering::PartialLess | POrdering::PartialEqual => Some(self),
|
||||
POrdering::PartialGreater => Some(other),
|
||||
POrdering::NotComparable => None
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the maximum of `a` and `b` if they are comparable.
|
||||
/// Return the maximum of `self` and `other` if they are comparable.
|
||||
#[inline]
|
||||
fn partial_max<'a>(a: &'a Self, b: &'a Self) -> Option<&'a Self> {
|
||||
match POrd::partial_cmp(a, b) {
|
||||
POrdering::PartialGreater | POrdering::PartialEqual => Some(a),
|
||||
POrdering::PartialLess => Some(b),
|
||||
fn partial_max<'a>(&'a self, other: &'a Self) -> Option<&'a Self> {
|
||||
match POrd::partial_cmp(self, other) {
|
||||
POrdering::PartialGreater | POrdering::PartialEqual => Some(self),
|
||||
POrdering::PartialLess => Some(other),
|
||||
POrdering::NotComparable => None
|
||||
}
|
||||
}
|
||||
@ -127,9 +127,9 @@ pub trait POrd {
|
||||
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
|
||||
/// `min` or `max`.
|
||||
#[inline]
|
||||
fn partial_clamp<'a>(value: &'a Self, min: &'a Self, max: &'a Self) -> Option<&'a Self> {
|
||||
let v_min = POrd::partial_cmp(value, min);
|
||||
let v_max = POrd::partial_cmp(value, max);
|
||||
fn partial_clamp<'a>(&'a self, min: &'a Self, max: &'a Self) -> Option<&'a Self> {
|
||||
let v_min = self.partial_cmp(min);
|
||||
let v_max = self.partial_cmp(max);
|
||||
|
||||
if v_min.is_not_comparable() || v_max.is_not_comparable() {
|
||||
None
|
||||
@ -142,7 +142,7 @@ pub trait POrd {
|
||||
Some(max)
|
||||
}
|
||||
else {
|
||||
Some(value)
|
||||
Some(self)
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -154,12 +154,12 @@ pub trait ApproxEq<Eps> {
|
||||
fn approx_epsilon(unused_self: Option<Self>) -> Eps;
|
||||
|
||||
/// Tests approximate equality using a custom epsilon.
|
||||
fn approx_eq_eps(a: &Self, other: &Self, epsilon: &Eps) -> bool;
|
||||
fn approx_eq_eps(&self, other: &Self, epsilon: &Eps) -> bool;
|
||||
|
||||
/// Tests approximate equality.
|
||||
#[inline]
|
||||
fn approx_eq(a: &Self, b: &Self) -> bool {
|
||||
ApproxEq::approx_eq_eps(a, b, &ApproxEq::approx_epsilon(None::<Self>))
|
||||
fn approx_eq(&self, other: &Self) -> bool {
|
||||
self.approx_eq_eps(other, &ApproxEq::approx_epsilon(None::<Self>))
|
||||
}
|
||||
}
|
||||
|
||||
@ -170,8 +170,8 @@ impl ApproxEq<f32> for f32 {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &f32, b: &f32, epsilon: &f32) -> bool {
|
||||
::abs(&(*a - *b)) < *epsilon
|
||||
fn approx_eq_eps(&self, other: &f32, epsilon: &f32) -> bool {
|
||||
::abs(&(*self - *other)) < *epsilon
|
||||
}
|
||||
}
|
||||
|
||||
@ -182,8 +182,8 @@ impl ApproxEq<f64> for f64 {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(a: &f64, b: &f64, approx_epsilon: &f64) -> bool {
|
||||
::abs(&(*a - *b)) < *approx_epsilon
|
||||
fn approx_eq_eps(&self, other: &f64, approx_epsilon: &f64) -> bool {
|
||||
::abs(&(*self - *other)) < *approx_epsilon
|
||||
}
|
||||
}
|
||||
|
||||
@ -198,7 +198,7 @@ pub trait Absolute<A> {
|
||||
/// Trait of objects having an inverse. Typically used to implement matrix inverse.
|
||||
pub trait Inv {
|
||||
/// Returns the inverse of `m`.
|
||||
fn inv_cpy(m: &Self) -> Option<Self>;
|
||||
fn inv_cpy(&self) -> Option<Self>;
|
||||
|
||||
/// In-place version of `inverse`.
|
||||
fn inv(&mut self) -> bool;
|
||||
@ -207,13 +207,13 @@ pub trait Inv {
|
||||
/// Trait of objects having a determinant. Typically used by square matrices.
|
||||
pub trait Det<N> {
|
||||
/// Returns the determinant of `m`.
|
||||
fn det(m: &Self) -> N;
|
||||
fn det(&self) -> N;
|
||||
}
|
||||
|
||||
/// Trait of objects which can be transposed.
|
||||
pub trait Transpose {
|
||||
/// Computes the transpose of a matrix.
|
||||
fn transpose_cpy(m: &Self) -> Self;
|
||||
fn transpose_cpy(&self) -> Self;
|
||||
|
||||
/// In-place version of `transposed`.
|
||||
fn transpose(&mut self);
|
||||
@ -222,7 +222,7 @@ pub trait Transpose {
|
||||
/// Traits of objects having an outer product.
|
||||
pub trait Outer<M> {
|
||||
/// Computes the outer product: `a * b`
|
||||
fn outer(a: &Self, b: &Self) -> M;
|
||||
fn outer(&self, other: &Self) -> M;
|
||||
}
|
||||
|
||||
/// Trait for computing the covariance of a set of data.
|
||||
@ -231,14 +231,14 @@ pub trait Cov<M> {
|
||||
///
|
||||
/// * For matrices, observations are stored in its rows.
|
||||
/// * For vectors, observations are stored in its components (thus are 1-dimensional).
|
||||
fn cov(m: &Self) -> M;
|
||||
fn cov(&self) -> M;
|
||||
|
||||
/// Computes the covariance of the obsevations stored by `m`:
|
||||
///
|
||||
/// * For matrices, observations are stored in its rows.
|
||||
/// * For vectors, observations are stored in its components (thus are 1-dimensional).
|
||||
fn cov_to(m: &Self, out: &mut M) {
|
||||
*out = Cov::cov(m)
|
||||
fn cov_to(&self, out: &mut M) {
|
||||
*out = self.cov()
|
||||
}
|
||||
}
|
||||
|
||||
@ -248,13 +248,13 @@ pub trait Mean<N> {
|
||||
///
|
||||
/// * For matrices, observations are stored in its rows.
|
||||
/// * For vectors, observations are stored in its components (thus are 1-dimensional).
|
||||
fn mean(v: &Self) -> N;
|
||||
fn mean(&self) -> N;
|
||||
}
|
||||
|
||||
/// Trait for computing the eigenvector and eigenvalues of a square matrix usin the QR algorithm.
|
||||
pub trait EigenQR<N, V>: SquareMat<N, V> {
|
||||
/// Computes the eigenvectors and eigenvalues of this matrix.
|
||||
fn eigen_qr(m: &Self, eps: &N, niter: uint) -> (Self, V);
|
||||
fn eigen_qr(&self, eps: &N, niter: uint) -> (Self, V);
|
||||
}
|
||||
|
||||
// XXX: those two traits should not exist since there is generalized operator overloading of Add
|
||||
|
@ -270,14 +270,14 @@ pub trait NumPnt<N, V>:
|
||||
pub trait FloatPnt<N: BaseFloat, V: Norm<N>>: NumPnt<N, V> {
|
||||
/// Computes the square distance between two points.
|
||||
#[inline]
|
||||
fn sqdist(a: &Self, b: &Self) -> N {
|
||||
Norm::sqnorm(&(*a - *b))
|
||||
fn sqdist(&self, other: &Self) -> N {
|
||||
(*self - *other).sqnorm()
|
||||
}
|
||||
|
||||
/// Computes the distance between two points.
|
||||
#[inline]
|
||||
fn dist(a: &Self, b: &Self) -> N {
|
||||
Norm::norm(&(*a - *b))
|
||||
fn dist(&self, other: &Self) -> N {
|
||||
(*self - *other).norm()
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user