From 3edef2f006387876ef11988b76dda57c0e20e9aa Mon Sep 17 00:00:00 2001 From: sebcrozet Date: Tue, 19 Mar 2019 14:22:59 +0100 Subject: [PATCH] Decomposition results: return a real vector whenever applicable. This includes singular values, eigenvalues of hermitian matrices, tridiagonalization and bidiagonalization diagonal and off-diagonal elements. --- src/base/matrix.rs | 13 +- src/linalg/bidiagonal.rs | 10 +- src/linalg/givens.rs | 10 ++ src/linalg/svd.rs | 212 +++++++++++++++------------- src/linalg/symmetric_eigen.rs | 76 +++++----- src/linalg/symmetric_tridiagonal.rs | 26 ++-- tests/linalg/svd.rs | 28 ++-- 7 files changed, 198 insertions(+), 177 deletions(-) diff --git a/src/base/matrix.rs b/src/base/matrix.rs index 1e402d29..73fe3fa4 100644 --- a/src/base/matrix.rs +++ b/src/base/matrix.rs @@ -1026,10 +1026,19 @@ impl> Matrix { } impl> SquareMatrix { - /// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0. + /// The diagonal of this matrix. #[inline] pub fn diagonal(&self) -> VectorN where DefaultAllocator: Allocator { + self.map_diagonal(|e| e) + } + + /// Apply the given function to this matrix's diagonal and returns it. + /// + /// This is a more efficient version of `self.diagonal().map(f)` since this + /// allocates only once. + pub fn map_diagonal(&self, mut f: impl FnMut(N) -> N2) -> VectorN + where DefaultAllocator: Allocator { assert!( self.is_square(), "Unable to get the diagonal of a non-square matrix." @@ -1040,7 +1049,7 @@ impl> SquareMatrix { for i in 0..dim.value() { unsafe { - *res.vget_unchecked_mut(i) = *self.get_unchecked((i, i)); + *res.vget_unchecked_mut(i) = f(*self.get_unchecked((i, i))); } } diff --git a/src/linalg/bidiagonal.rs b/src/linalg/bidiagonal.rs index 51087e96..7de0b887 100644 --- a/src/linalg/bidiagonal.rs +++ b/src/linalg/bidiagonal.rs @@ -272,13 +272,15 @@ where } /// The diagonal part of this decomposed matrix. - pub fn diagonal(&self) -> VectorN> { - self.diagonal.map(|e| N::from_real(e.modulus())) + pub fn diagonal(&self) -> VectorN> + where DefaultAllocator: Allocator> { + self.diagonal.map(|e| e.modulus()) } /// The off-diagonal part of this decomposed matrix. - pub fn off_diagonal(&self) -> VectorN, U1>> { - self.off_diagonal.map(|e| N::from_real(e.modulus())) + pub fn off_diagonal(&self) -> VectorN, U1>> + where DefaultAllocator: Allocator, U1>> { + self.off_diagonal.map(|e| e.modulus()) } #[doc(hidden)] diff --git a/src/linalg/givens.rs b/src/linalg/givens.rs index 72f4a427..5943e0c1 100644 --- a/src/linalg/givens.rs +++ b/src/linalg/givens.rs @@ -28,6 +28,16 @@ impl GivensRotation { } } + /// Initializes a Givens rotation from its components. + /// + /// The components are copies as-is. It is not checked whether they describe + /// an actually valid Givens rotation. + pub fn new_unchecked(c: N::Real, s: N) -> Self { + Self { + c, s + } + } + /// Initializes a Givens rotation from its non-normalized cosine an sine components. pub fn new(c: N, s: N) -> (Self, N) { Self::try_new(c, s, N::Real::zero()).unwrap() diff --git a/src/linalg/svd.rs b/src/linalg/svd.rs index 852878f7..8de75829 100644 --- a/src/linalg/svd.rs +++ b/src/linalg/svd.rs @@ -2,11 +2,11 @@ use serde::{Deserialize, Serialize}; use num_complex::Complex as NumComplex; -use num::Zero; +use num::{Zero, One}; use std::ops::MulAssign; use approx::AbsDiffEq; -use alga::general::Complex; +use alga::general::{Real, Complex}; use allocator::Allocator; use base::{DefaultAllocator, Matrix, Matrix2x3, MatrixMN, Vector2, VectorN}; use constraint::{SameNumberOfRows, ShapeConstraint}; @@ -23,51 +23,47 @@ use linalg::givens::GivensRotation; #[cfg_attr( feature = "serde-serialize", serde(bound( - serialize = "DefaultAllocator: Allocator + - Allocator> + + serialize = "DefaultAllocator: Allocator> + Allocator, C> + Allocator>, MatrixMN>: Serialize, MatrixMN, C>: Serialize, - VectorN>: Serialize" + VectorN>: Serialize" )) )] #[cfg_attr( feature = "serde-serialize", serde(bound( - deserialize = "DefaultAllocator: Allocator + - Allocator> + + deserialize = "DefaultAllocator: Allocator> + Allocator, C> + Allocator>, MatrixMN>: Deserialize<'de>, MatrixMN, C>: Deserialize<'de>, - VectorN>: Deserialize<'de>" + VectorN>: Deserialize<'de>" )) )] #[derive(Clone, Debug)] pub struct SVD, C: Dim> where DefaultAllocator: Allocator, C> + Allocator> - + Allocator> + + Allocator> { /// The left-singular vectors `U` of this SVD. pub u: Option>>, /// The right-singular vectors `V^t` of this SVD. pub v_t: Option, C>>, - // FIXME: this should a vector of N::Real - // because singular values are necessarily real. /// The singular values of this SVD. - pub singular_values: VectorN>, + pub singular_values: VectorN>, } impl, C: Dim> Copy for SVD where DefaultAllocator: Allocator, C> + Allocator> - + Allocator>, + + Allocator>, MatrixMN>: Copy, MatrixMN, C>: Copy, - VectorN>: Copy, + VectorN>: Copy, {} impl, C: Dim> SVD @@ -79,7 +75,9 @@ where + Allocator, U1>> + Allocator, C> + Allocator> - + Allocator>, + + Allocator> + + Allocator> + + Allocator, U1>>, { /// Computes the Singular Value Decomposition of `matrix` using implicit shift. pub fn new(matrix: MatrixMN, compute_u: bool, compute_v: bool) -> Self { @@ -155,7 +153,7 @@ where for k in start..n { let m12 = if k == n - 1 { - N::zero() + N::Real::zero() } else { off_diagonal[k + 1] }; @@ -163,15 +161,15 @@ where let mut subm = Matrix2x3::new( diagonal[k], off_diagonal[k], - N::zero(), - N::zero(), + N::Real::zero(), + N::Real::zero(), diagonal[k + 1], m12, ); if let Some((rot1, norm1)) = GivensRotation::cancel_y(&vec) { - rot1.inverse() - .rotate_rows(&mut subm.fixed_columns_mut::(0)); + rot1.inverse().rotate_rows(&mut subm.fixed_columns_mut::(0)); + let rot1 = GivensRotation::new_unchecked(rot1.c(), N::from_real(rot1.s())); if k > start { // This is not the first iteration. @@ -182,7 +180,10 @@ where // FIXME: does the case `v.y == 0` ever happen? let (rot2, norm2) = GivensRotation::cancel_y(&v).unwrap_or((GivensRotation::identity(), subm[(0, 0)])); + rot2.rotate(&mut subm.fixed_columns_mut::(1)); + let rot2 = GivensRotation::new_unchecked(rot2.c(), N::from_real(rot2.s())); + subm[(0, 0)] = norm2; if let Some(ref mut v_t) = v_t { @@ -219,17 +220,19 @@ where } } else if subdim == 2 { // Solve the remaining 2x2 subproblem. - let (u2, s, v2) = Self::compute_2x2_uptrig_svd( + let (u2, s, v2) = compute_2x2_uptrig_svd( diagonal[start], off_diagonal[start], diagonal[start + 1], compute_u && b.is_upper_diagonal() || compute_v && !b.is_upper_diagonal(), compute_v && b.is_upper_diagonal() || compute_u && !b.is_upper_diagonal(), ); + let u2 = u2.map(|u2| GivensRotation::new_unchecked(u2.c(), N::from_real(u2.s()))); + let v2 = v2.map(|v2| GivensRotation::new_unchecked(v2.c(), N::from_real(v2.s()))); diagonal[start + 0] = s[0]; diagonal[start + 1] = s[1]; - off_diagonal[start] = N::zero(); + off_diagonal[start] = N::Real::zero(); if let Some(ref mut u) = u { let rot = if b.is_upper_diagonal() { @@ -263,17 +266,17 @@ where } } - diagonal.scale_mut(m_amax); + diagonal *= m_amax; // Ensure all singular value are non-negative. for i in 0..dim { let sval = diagonal[i]; - let (modulus, sign) = sval.to_exp(); - if modulus != N::Real::zero() { - diagonal[i] = N::from_real(modulus); + + if sval < N::Real::zero() { + diagonal[i] = -sval; if let Some(ref mut u) = u { - u.column_mut(i).mul_assign(sign); + u.column_mut(i).neg_mut(); } } } @@ -285,55 +288,6 @@ where }) } - // Explicit formulaes inspired from the paper "Computing the Singular Values of 2-by-2 Complex - // Matrices", Sanzheng Qiao and Xiaohong Wang. - // http://www.cas.mcmaster.ca/sqrl/papers/sqrl5.pdf - fn compute_2x2_uptrig_svd( - m11: N, - m12: N, - m22: N, - compute_u: bool, - compute_v: bool, - ) -> (Option>, Vector2, Option>) - { - let two: N::Real = ::convert(2.0f64); - let half: N::Real = ::convert(0.5f64); - - let denom = (m11 + m22).hypot(m12) + (m11 - m22).hypot(m12); - - // NOTE: v1 is the singular value that is the closest to m22. - // This prevents cancellation issues when constructing the vector `csv` below. If we chose - // otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrophic - // cancellation on `v1 * v1 - m11 * m11` below. - let mut v1 = (m11 * m22).scale(two / denom); - let mut v2 = N::from_real(half * denom); - - let mut u = None; - let mut v_t = None; - - if compute_u || compute_v { - let (csv, sgn_v) = GivensRotation::new(m11 * m12, v1 * v1 - m11 * m11); - v1 *= sgn_v; - v2 *= sgn_v; - - if compute_v { - v_t = Some(csv); - } - - if compute_u { - let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1; - let su = (m22 * csv.s()) / v1; - let (csu, sgn_u) = GivensRotation::new(cu, su); - - v1 *= sgn_u; - v2 *= sgn_u; - u = Some(csu); - } - } - - (u, Vector2::new(v1, v2), v_t) - } - /* fn display_bidiag(b: &Bidiagonal, begin: usize, end: usize) { for i in begin .. end { @@ -350,8 +304,8 @@ where */ fn delimit_subproblem( - diagonal: &mut VectorN>, - off_diagonal: &mut VectorN, U1>>, + diagonal: &mut VectorN>, + off_diagonal: &mut VectorN, U1>>, u: &mut Option>>, v_t: &mut Option, C>>, is_upper_diagonal: bool, @@ -367,16 +321,16 @@ where if off_diagonal[m].is_zero() || off_diagonal[m].modulus() <= eps * (diagonal[n].modulus() + diagonal[m].modulus()) { - off_diagonal[m] = N::zero(); + off_diagonal[m] = N::Real::zero(); } else if diagonal[m].modulus() <= eps { - diagonal[m] = N::zero(); + diagonal[m] = N::Real::zero(); Self::cancel_horizontal_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m, m + 1); if m != 0 { Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m - 1); } } else if diagonal[n].modulus() <= eps { - diagonal[n] = N::zero(); + diagonal[n] = N::Real::zero(); Self::cancel_vertical_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m); } else { break; @@ -395,12 +349,12 @@ where if off_diagonal[m].modulus() <= eps * (diagonal[new_start].modulus() + diagonal[m].modulus()) { - off_diagonal[m] = N::zero(); + off_diagonal[m] = N::Real::zero(); break; } // FIXME: write a test that enters this case. else if diagonal[m].modulus() <= eps { - diagonal[m] = N::zero(); + diagonal[m] = N::Real::zero(); Self::cancel_horizontal_off_diagonal_elt(diagonal, off_diagonal, u, v_t, is_upper_diagonal, m, n); if m != 0 { @@ -417,8 +371,8 @@ where // Cancels the i-th off-diagonal element using givens rotations. fn cancel_horizontal_off_diagonal_elt( - diagonal: &mut VectorN>, - off_diagonal: &mut VectorN, U1>>, + diagonal: &mut VectorN>, + off_diagonal: &mut VectorN, U1>>, u: &mut Option>>, v_t: &mut Option, C>>, is_upper_diagonal: bool, @@ -427,10 +381,11 @@ where ) { let mut v = Vector2::new(off_diagonal[i], diagonal[i + 1]); - off_diagonal[i] = N::zero(); + off_diagonal[i] = N::Real::zero(); for k in i..end { if let Some((rot, norm)) = GivensRotation::cancel_x(&v) { + let rot = GivensRotation::new_unchecked(rot.c(), N::from_real(rot.s())); diagonal[k + 1] = norm; if is_upper_diagonal { @@ -443,9 +398,9 @@ where } if k + 1 != end { - v.x = -rot.s() * off_diagonal[k + 1]; + v.x = -rot.s().real() * off_diagonal[k + 1]; v.y = diagonal[k + 2]; - off_diagonal[k + 1] = off_diagonal[k + 1].scale(rot.c()); + off_diagonal[k + 1] *= rot.c(); } } else { break; @@ -455,8 +410,8 @@ where // Cancels the i-th off-diagonal element using givens rotations. fn cancel_vertical_off_diagonal_elt( - diagonal: &mut VectorN>, - off_diagonal: &mut VectorN, U1>>, + diagonal: &mut VectorN>, + off_diagonal: &mut VectorN, U1>>, u: &mut Option>>, v_t: &mut Option, C>>, is_upper_diagonal: bool, @@ -464,10 +419,11 @@ where ) { let mut v = Vector2::new(diagonal[i], off_diagonal[i]); - off_diagonal[i] = N::zero(); + off_diagonal[i] = N::Real::zero(); for k in (0..i + 1).rev() { if let Some((rot, norm)) = GivensRotation::cancel_y(&v) { + let rot = GivensRotation::new_unchecked(rot.c(), N::from_real(rot.s())); diagonal[k] = norm; if is_upper_diagonal { @@ -481,8 +437,8 @@ where if k > 0 { v.x = diagonal[k - 1]; - v.y = rot.s() * off_diagonal[k - 1]; - off_diagonal[k - 1] = off_diagonal[k - 1].scale(rot.c()); + v.y = rot.s().real() * off_diagonal[k - 1]; + off_diagonal[k - 1] *= rot.c(); } } else { break; @@ -497,7 +453,7 @@ where eps >= N::Real::zero(), "SVD rank: the epsilon must be non-negative." ); - self.singular_values.iter().filter(|e| e.asum() > eps).count() + self.singular_values.iter().filter(|e| **e > eps).count() } /// Rebuild the original matrix. @@ -510,7 +466,7 @@ where (Some(mut u), Some(v_t)) => { for i in 0..self.singular_values.len() { let val = self.singular_values[i]; - u.column_mut(i).mul_assign(val); + u.column_mut(i).scale_mut(val); } Ok(u * v_t) } @@ -536,10 +492,10 @@ where for i in 0..self.singular_values.len() { let val = self.singular_values[i]; - if val.asum() > eps { - self.singular_values[i] = N::one() / val; + if val > eps { + self.singular_values[i] = N::Real::one() / val; } else { - self.singular_values[i] = N::zero(); + self.singular_values[i] = N::Real::zero(); } } @@ -575,8 +531,8 @@ where for i in 0..self.singular_values.len() { let val = self.singular_values[i]; - if val.asum() > eps { - col[i] /= val; + if val > eps { + col[i] = col[i].unscale(val); } else { col[i] = N::zero(); } @@ -602,7 +558,9 @@ where + Allocator, U1>> + Allocator, C> + Allocator> - + Allocator>, + + Allocator> + + Allocator> + + Allocator, U1>>, { /// Computes the Singular Value Decomposition using implicit shift. pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD { @@ -631,7 +589,7 @@ where } /// Computes the singular values of this matrix. - pub fn singular_values(&self) -> VectorN> { + pub fn singular_values(&self) -> VectorN> { SVD::new(self.clone_owned(), false, false).singular_values } @@ -653,3 +611,53 @@ where SVD::new(self.clone_owned(), true, true).pseudo_inverse(eps) } } + + +// Explicit formulae inspired from the paper "Computing the Singular Values of 2-by-2 Complex +// Matrices", Sanzheng Qiao and Xiaohong Wang. +// http://www.cas.mcmaster.ca/sqrl/papers/sqrl5.pdf +fn compute_2x2_uptrig_svd( + m11: N, + m12: N, + m22: N, + compute_u: bool, + compute_v: bool, +) -> (Option>, Vector2, Option>) +{ + let two: N::Real = ::convert(2.0f64); + let half: N::Real = ::convert(0.5f64); + + let denom = (m11 + m22).hypot(m12) + (m11 - m22).hypot(m12); + + // NOTE: v1 is the singular value that is the closest to m22. + // This prevents cancellation issues when constructing the vector `csv` below. If we chose + // otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrophic + // cancellation on `v1 * v1 - m11 * m11` below. + let mut v1 = m11 * m22 * two / denom; + let mut v2 = half * denom; + + let mut u = None; + let mut v_t = None; + + if compute_u || compute_v { + let (csv, sgn_v) = GivensRotation::new(m11 * m12, v1 * v1 - m11 * m11); + v1 *= sgn_v; + v2 *= sgn_v; + + if compute_v { + v_t = Some(csv); + } + + if compute_u { + let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1; + let su = (m22 * csv.s()) / v1; + let (csu, sgn_u) = GivensRotation::new(cu, su); + + v1 *= sgn_u; + v2 *= sgn_u; + u = Some(csu); + } + } + + (u, Vector2::new(v1, v2), v_t) +} \ No newline at end of file diff --git a/src/linalg/symmetric_eigen.rs b/src/linalg/symmetric_eigen.rs index b5437d83..a0f614fe 100644 --- a/src/linalg/symmetric_eigen.rs +++ b/src/linalg/symmetric_eigen.rs @@ -22,8 +22,8 @@ use linalg::SymmetricTridiagonal; feature = "serde-serialize", serde(bound( serialize = "DefaultAllocator: Allocator + - Allocator, - VectorN: Serialize, + Allocator, + VectorN: Serialize, MatrixN: Serialize" )) )] @@ -31,32 +31,31 @@ use linalg::SymmetricTridiagonal; feature = "serde-serialize", serde(bound( deserialize = "DefaultAllocator: Allocator + - Allocator, - VectorN: Deserialize<'de>, + Allocator, + VectorN: Deserialize<'de>, MatrixN: Deserialize<'de>" )) )] #[derive(Clone, Debug)] pub struct SymmetricEigen -where DefaultAllocator: Allocator + Allocator +where DefaultAllocator: Allocator + Allocator { /// The eigenvectors of the decomposed matrix. pub eigenvectors: MatrixN, - // FIXME: this should be a VectorN /// The unsorted eigenvalues of the decomposed matrix. - pub eigenvalues: VectorN, + pub eigenvalues: VectorN, } impl Copy for SymmetricEigen where - DefaultAllocator: Allocator + Allocator, + DefaultAllocator: Allocator + Allocator, MatrixN: Copy, - VectorN: Copy, + VectorN: Copy, {} impl SymmetricEigen -where DefaultAllocator: Allocator + Allocator +where DefaultAllocator: Allocator + Allocator { /// Computes the eigendecomposition of the given symmetric matrix. /// @@ -64,7 +63,8 @@ where DefaultAllocator: Allocator + Allocator pub fn new(m: MatrixN) -> Self where D: DimSub, - DefaultAllocator: Allocator>, + DefaultAllocator: Allocator> + // For tridiagonalization + Allocator>, { Self::try_new(m, N::Real::default_epsilon(), 0).unwrap() } @@ -83,7 +83,8 @@ where DefaultAllocator: Allocator + Allocator pub fn try_new(m: MatrixN, eps: N::Real, max_niter: usize) -> Option where D: DimSub, - DefaultAllocator: Allocator>, + DefaultAllocator: Allocator> + // For tridiagonalization + Allocator>, { Self::do_decompose(m, true, eps, max_niter).map(|(vals, vecs)| SymmetricEigen { eigenvectors: vecs.unwrap(), @@ -96,10 +97,11 @@ where DefaultAllocator: Allocator + Allocator eigenvectors: bool, eps: N::Real, max_niter: usize, - ) -> Option<(VectorN, Option>)> + ) -> Option<(VectorN, Option>)> where D: DimSub, - DefaultAllocator: Allocator>, + DefaultAllocator: Allocator> + // For tridiagonalization + Allocator>, { assert!( m.is_square(), @@ -158,41 +160,29 @@ where DefaultAllocator: Allocator + Allocator off_diag[i - 1] = norm; } + let mii = diag[i]; let mjj = diag[j]; let mij = off_diag[i]; let cc = rot.c() * rot.c(); - let ss = rot.s().modulus_squared(); // rot.s() * rot.s().conjugate() - let cs = rot.s().scale(rot.c()); + let ss = rot.s() * rot.s(); + let cs = rot.c() * rot.s(); - // b = cs * mij.conjugate() + cs.conjugate() * mij - let b = N::from_real((cs * mij.conjugate()).real() * ::convert(2.0)); + let b = cs * ::convert(2.0) * mij; - diag[i] = (mii.scale(cc) + mjj.scale(ss)) - b; - diag[j] = (mii.scale(ss) + mjj.scale(cc)) + b; - off_diag[i] = cs * (mii - mjj) + mij.scale(cc) - mij.conjugate() * rot.s() * rot.s(); - - let mut mat = Matrix2::new( - mii, mij.conjugate(), - mij, mjj); - println!("The mat before rotate: {:.5}", mat); - println!("The v before rotate: {:.5?}", v); - rot.rotate(&mut mat); - rot.inverse().rotate_rows(&mut mat); - let mut v2 = v.clone(); - rot.rotate(&mut v2); - println!("The v: {:.5?}", v2); - println!("The mat: {:.5}", mat); - println!("Its components: {:.5}, {:.5}, {:.5}", diag[i], diag[j], off_diag[i]); + diag[i] = (cc * mii + ss * mjj) - b; + diag[j] = (ss * mii + cc * mjj) + b; + off_diag[i] = cs * (mii - mjj) + mij * (cc - ss); if i != n - 1 { v.x = off_diag[i]; v.y = -rot.s() * off_diag[i + 1]; - off_diag[i + 1] = off_diag[i + 1].scale(rot.c()); + off_diag[i + 1] *= rot.c(); } if let Some(ref mut q) = q { + let rot = GivensRotation::new_unchecked(rot.c(), N::from_real(rot.s())); rot.inverse().rotate_rows(&mut q.fixed_columns_mut::(i)); } } else { @@ -220,6 +210,7 @@ where DefaultAllocator: Allocator + Allocator if let Some(ref mut q) = q { if let Some((rot, _)) = GivensRotation::try_new(basis.x, basis.y, eps) { + let rot = GivensRotation::new_unchecked(rot.c(), N::from_real(rot.s())); rot.rotate_rows(&mut q.fixed_columns_mut::(start)); } } @@ -245,14 +236,14 @@ where DefaultAllocator: Allocator + Allocator } fn delimit_subproblem( - diag: &VectorN, - off_diag: &mut VectorN>, + diag: &VectorN, + off_diag: &mut VectorN>, end: usize, eps: N::Real, ) -> (usize, usize) where D: DimSub, - DefaultAllocator: Allocator>, + DefaultAllocator: Allocator>, { let mut n = end; @@ -277,7 +268,7 @@ where DefaultAllocator: Allocator + Allocator if off_diag[m].is_zero() || off_diag[m].modulus() <= eps * (diag[new_start].modulus() + diag[m].modulus()) { - off_diag[m] = N::zero(); + off_diag[m] = N::Real::zero(); break; } @@ -294,7 +285,7 @@ where DefaultAllocator: Allocator + Allocator let mut u_t = self.eigenvectors.clone(); for i in 0..self.eigenvalues.len() { let val = self.eigenvalues[i]; - u_t.column_mut(i).mul_assign(val); + u_t.column_mut(i).scale_mut(val); } u_t.conjugate_transpose_mut(); &self.eigenvectors * u_t @@ -324,7 +315,8 @@ pub fn wilkinson_shift(tmm: N, tnn: N, tmn: N) -> N { * */ impl, S: Storage> SquareMatrix -where DefaultAllocator: Allocator + Allocator + Allocator> +where DefaultAllocator: Allocator + Allocator> + + Allocator + Allocator> { /// Computes the eigendecomposition of this symmetric matrix. /// @@ -351,7 +343,7 @@ where DefaultAllocator: Allocator + Allocator + Allocator VectorN { + pub fn symmetric_eigenvalues(&self) -> VectorN { SymmetricEigen::do_decompose(self.clone_owned(), false, N::Real::default_epsilon(), 0) .unwrap() .0 diff --git a/src/linalg/symmetric_tridiagonal.rs b/src/linalg/symmetric_tridiagonal.rs index 8fd36003..0b8f5675 100644 --- a/src/linalg/symmetric_tridiagonal.rs +++ b/src/linalg/symmetric_tridiagonal.rs @@ -102,30 +102,30 @@ where DefaultAllocator: Allocator + Allocator> /// Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this /// decomposition. - pub fn unpack(self) -> (MatrixN, VectorN, VectorN>) - where DefaultAllocator: Allocator { + pub fn unpack(self) -> (MatrixN, VectorN, VectorN>) + where DefaultAllocator: Allocator + + Allocator> { let diag = self.diagonal(); let q = self.q(); - (q, diag, self.off_diagonal.apply_into(|e| N::from_real(e.modulus()))) + (q, diag, self.off_diagonal.map(N::modulus)) } /// Retrieve the diagonal, and off diagonal elements of this decomposition. - pub fn unpack_tridiagonal(mut self) -> (VectorN, VectorN>) - where DefaultAllocator: Allocator { - let diag = self.diagonal(); - - (diag, self.off_diagonal.apply_into(|e| N::from_real(e.modulus()))) + pub fn unpack_tridiagonal(mut self) -> (VectorN, VectorN>) + where DefaultAllocator: Allocator + + Allocator> { + (self.diagonal(), self.off_diagonal.map(N::modulus)) } /// The diagonal components of this decomposition. - pub fn diagonal(&self) -> VectorN - where DefaultAllocator: Allocator { self.tri.diagonal() } + pub fn diagonal(&self) -> VectorN + where DefaultAllocator: Allocator { self.tri.map_diagonal(|e| e.real()) } /// The off-diagonal components of this decomposition. - pub fn off_diagonal(&self) -> VectorN> - where DefaultAllocator: Allocator { - self.off_diagonal.map(|e| N::from_real(e.modulus())) + pub fn off_diagonal(&self) -> VectorN> + where DefaultAllocator: Allocator> { + self.off_diagonal.map(N::modulus) } /// Computes the orthogonal matrix `Q` of this decomposition. diff --git a/tests/linalg/svd.rs b/tests/linalg/svd.rs index 860c7ce2..8e98b3f7 100644 --- a/tests/linalg/svd.rs +++ b/tests/linalg/svd.rs @@ -18,11 +18,11 @@ mod quickcheck_tests { let svd = m.clone().svd(true, true); let recomp_m = svd.clone().recompose().unwrap(); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = DMatrix::from_diagonal(&s); + let ds = DMatrix::from_diagonal(&s.map(|e| Complex::from_real(e))); println!("{}{}", &m, &u * &ds * &v_t); - s.iter().all(|e| e.real() >= 0.0) && + s.iter().all(|e| *e >= 0.0) && relative_eq!(&u * ds * &v_t, recomp_m, epsilon = 1.0e-5) && relative_eq!(m, recomp_m, epsilon = 1.0e-5) } @@ -35,9 +35,9 @@ mod quickcheck_tests { let m = m.map(|e| e.0); let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = Matrix3::from_diagonal(&s); + let ds = Matrix3::from_diagonal(&s.map(|e| Complex::from_real(e))); - s.iter().all(|e| e.real() >= 0.0) && + s.iter().all(|e| *e >= 0.0) && relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) && u.is_orthogonal(1.0e-5) && v_t.is_orthogonal(1.0e-5) @@ -47,9 +47,9 @@ mod quickcheck_tests { let m = m.map(|e| e.0); let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = Matrix2::from_diagonal(&s); + let ds = Matrix2::from_diagonal(&s.map(|e| Complex::from_real(e))); - s.iter().all(|e| e.real() >= 0.0) && + s.iter().all(|e| *e >= 0.0) && relative_eq!(m, &u * ds * &v_t, epsilon = 1.0e-5) && u.is_orthogonal(1.0e-5) && v_t.is_orthogonal(1.0e-5) @@ -60,9 +60,9 @@ mod quickcheck_tests { let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = Matrix3::from_diagonal(&s); + let ds = Matrix3::from_diagonal(&s.map(|e| Complex::from_real(e))); - s.iter().all(|e| e.real() >= 0.0) && + s.iter().all(|e| *e >= 0.0) && relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) } @@ -70,9 +70,9 @@ mod quickcheck_tests { let m = m.map(|e| e.0); let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = Matrix2::from_diagonal(&s); + let ds = Matrix2::from_diagonal(&s.map(|e| Complex::from_real(e))); - s.iter().all(|e| e.real() >= 0.0) && + s.iter().all(|e| *e >= 0.0) && relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) } @@ -80,9 +80,9 @@ mod quickcheck_tests { let m = m.map(|e| e.0); let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = Matrix4::from_diagonal(&s); + let ds = Matrix4::from_diagonal(&s.map(|e| Complex::from_real(e))); - s.iter().all(|e| e.real() >= 0.0) && + s.iter().all(|e| *e >= 0.0) && relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) && u.is_orthogonal(1.0e-5) && v_t.is_orthogonal(1.0e-5) @@ -92,14 +92,14 @@ mod quickcheck_tests { let m = m.map(|e| e.0); let svd = m.svd(true, true); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); - let ds = Matrix2::from_diagonal(&s); + let ds = Matrix2::from_diagonal(&s.map(|e| Complex::from_real(e))); println!("u, s, v_t: {}{}{}", u, s, v_t); println!("m: {}", m); println!("recomp: {}", u * ds * v_t); println!("uu_t, vv_t: {}{}", u * u.conjugate_transpose(), v_t.conjugate_transpose() * v_t); - s.iter().all(|e| e.re >= 0.0) && + s.iter().all(|e| *e >= 0.0) && relative_eq!(m, u * ds * v_t, epsilon = 1.0e-5) && u.is_orthogonal(1.0e-5) && v_t.is_orthogonal(1.0e-5)