forked from M-Labs/nalgebra
Add n-dimensional vector and matrix.
This commit is contained in:
parent
d247af1138
commit
30d82f2408
@ -6,6 +6,10 @@ programming language.
|
||||
It is mainly focused on features needed for real-time physics. It should be
|
||||
usable for graphics too.
|
||||
|
||||
## Disclaimer
|
||||
|
||||
As of today, nalgebra is largely untested.
|
||||
|
||||
## Licence
|
||||
|
||||
nalgebra is provided "as is", under the BSD 3-Clause License.
|
||||
|
@ -1,7 +1,10 @@
|
||||
use core::num::{One, Zero};
|
||||
use traits::dim::Dim;
|
||||
use traits::inv::Inv;
|
||||
use traits::transpose::Transpose;
|
||||
use dim2::vec2::Vec2;
|
||||
|
||||
#[deriving(Eq)]
|
||||
pub struct Mat2<T>
|
||||
{
|
||||
m11: T, m12: T,
|
||||
@ -17,6 +20,12 @@ pub fn Mat2<T:Copy>(m11: T, m12: T, m21: T, m22: T) -> Mat2<T>
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Dim for Mat2<T>
|
||||
{
|
||||
fn dim() -> uint
|
||||
{ 2 }
|
||||
}
|
||||
|
||||
impl<T:Copy + One + Zero> One for Mat2<T>
|
||||
{
|
||||
fn one() -> Mat2<T>
|
||||
@ -45,7 +54,7 @@ impl<T:Copy + Zero> Zero for Mat2<T>
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Add<T, T>> Mul<Mat2<T>, Mat2<T>> for Mat2<T>
|
||||
{
|
||||
fn mul(&self, other : &Mat2<T>) -> Mat2<T>
|
||||
fn mul(&self, other: &Mat2<T>) -> Mat2<T>
|
||||
{
|
||||
Mat2
|
||||
(self.m11 * other.m11 + self.m12 * other.m21,
|
||||
@ -60,18 +69,18 @@ impl<T:Copy + Mul<T, T> + Add<T, T>> Mul<Mat2<T>, Mat2<T>> for Mat2<T>
|
||||
//
|
||||
// impl<T:Copy + Mul<T, T> + Add<T, T>> Mul<Vec2<T>, Vec2<T>> for Mat2<T>
|
||||
// {
|
||||
// fn mul(&self, v : &Vec2<T>) -> Vec2<T>
|
||||
// fn mul(&self, v: &Vec2<T>) -> Vec2<T>
|
||||
// { Vec2(self.m11 * v.x + self.m12 * v.y, self.m21 * v.x + self.m22 * v.y) }
|
||||
// }
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Add<T, T>> Mul<Mat2<T>, Vec2<T>> for Vec2<T>
|
||||
{
|
||||
fn mul(&self, m : &Mat2<T>) -> Vec2<T>
|
||||
fn mul(&self, m: &Mat2<T>) -> Vec2<T>
|
||||
{ Vec2(self.x * m.m11 + self.y * m.m21, self.x * m.m12 + self.y * m.m22) }
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Div<T, T> + Sub<T, T> + Neg<T> + Eq + Zero>
|
||||
Inv<T> for Mat2<T>
|
||||
Inv for Mat2<T>
|
||||
{
|
||||
fn inv(&self) -> Mat2<T>
|
||||
{
|
||||
@ -84,6 +93,18 @@ Inv<T> for Mat2<T>
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:Copy> Transpose for Mat2<T>
|
||||
{
|
||||
fn transposed(&self) -> Mat2<T>
|
||||
{
|
||||
Mat2(self.m11, self.m21,
|
||||
self.m12, self.m22)
|
||||
}
|
||||
|
||||
fn transpose(&mut self)
|
||||
{ self.m21 <-> self.m12; }
|
||||
}
|
||||
|
||||
impl<T:ToStr> ToStr for Mat2<T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
|
@ -9,7 +9,7 @@ use dim2::mat2::Mat2;
|
||||
#[deriving(Eq)]
|
||||
pub struct Rotmat2<T>
|
||||
{
|
||||
submat: Mat2<T>
|
||||
priv submat: Mat2<T>
|
||||
}
|
||||
|
||||
pub fn Rotmat2<T:Copy + Trigonometric + Neg<T>>(angle: T) -> Rotmat2<T>
|
||||
|
@ -1,5 +1,8 @@
|
||||
use core::num::Zero;
|
||||
use traits::dot::Dot;
|
||||
use traits::sqrt::Sqrt;
|
||||
use traits::dim::Dim;
|
||||
use traits::cross::Cross;
|
||||
use traits::workarounds::sqrt::Sqrt;
|
||||
|
||||
#[deriving(Eq)]
|
||||
pub struct Vec2<T>
|
||||
@ -11,6 +14,11 @@ pub struct Vec2<T>
|
||||
pub fn Vec2<T:Copy>(x: T, y: T) -> Vec2<T>
|
||||
{ Vec2 {x: x, y: y} }
|
||||
|
||||
impl<T> Dim for Vec2<T>
|
||||
{
|
||||
fn dim() -> uint
|
||||
{ 2 }
|
||||
}
|
||||
|
||||
impl<T:Copy + Add<T,T>> Add<Vec2<T>, Vec2<T>> for Vec2<T>
|
||||
{
|
||||
@ -36,6 +44,21 @@ impl<T:Copy + Mul<T, T> + Add<T, T> + Sqrt> Dot<T> for Vec2<T>
|
||||
{ self.sqnorm().sqrt() }
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Sub<T, T>> Cross<T> for Vec2<T>
|
||||
{
|
||||
fn cross(&self, other : &Vec2<T>) -> T
|
||||
{ self.x * other.y - self.y * other.x }
|
||||
}
|
||||
|
||||
impl<T:Copy + Zero> Zero for Vec2<T>
|
||||
{
|
||||
fn zero() -> Vec2<T>
|
||||
{
|
||||
let _0 = Zero::zero();
|
||||
Vec2(_0, _0)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:ToStr> ToStr for Vec2<T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
|
@ -1,7 +1,11 @@
|
||||
use core::num::{One, Zero};
|
||||
// use core::rand::{Rand, Rng};
|
||||
use traits::dim::Dim;
|
||||
use traits::inv::Inv;
|
||||
use traits::transpose::Transpose;
|
||||
use dim3::vec3::Vec3;
|
||||
|
||||
#[deriving(Eq)]
|
||||
pub struct Mat3<T>
|
||||
{
|
||||
m11: T, m12: T, m13: T,
|
||||
@ -21,6 +25,12 @@ pub fn Mat3<T:Copy>(m11: T, m12: T, m13: T,
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Dim for Mat3<T>
|
||||
{
|
||||
fn dim() -> uint
|
||||
{ 3 }
|
||||
}
|
||||
|
||||
impl<T:Copy + One + Zero> One for Mat3<T>
|
||||
{
|
||||
fn one() -> Mat3<T>
|
||||
@ -95,7 +105,7 @@ impl<T:Copy + Mul<T, T> + Add<T, T>> Mul<Mat3<T>, Vec3<T>> for Vec3<T>
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Div<T, T> + Sub<T, T> + Add<T, T> + Neg<T>
|
||||
+ Eq + Zero>
|
||||
Inv<T> for Mat3<T>
|
||||
Inv for Mat3<T>
|
||||
{
|
||||
fn inv(&self) -> Mat3<T>
|
||||
{
|
||||
@ -125,6 +135,36 @@ Inv<T> for Mat3<T>
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:Copy> Transpose for Mat3<T>
|
||||
{
|
||||
fn transposed(&self) -> Mat3<T>
|
||||
{
|
||||
Mat3(self.m11, self.m21, self.m31,
|
||||
self.m12, self.m22, self.m32,
|
||||
self.m13, self.m23, self.m33)
|
||||
}
|
||||
|
||||
fn transpose(&mut self)
|
||||
{
|
||||
self.m12 <-> self.m21;
|
||||
self.m13 <-> self.m31;
|
||||
self.m23 <-> self.m32;
|
||||
}
|
||||
}
|
||||
|
||||
// impl<T:Rand> Rand for Mat3<T>
|
||||
// {
|
||||
// fn rand<R:Rng>(rng: &mut R) -> Mat3<T>
|
||||
// {
|
||||
// Mat3
|
||||
// {
|
||||
// m11: rng.next(), m12: rng.next(), m13: rng.next(),
|
||||
// m21: rng.next(), m22: rng.next(), m23: rng.next(),
|
||||
// m31: rng.next(), m32: rng.next(), m33: rng.next()
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
impl<T:ToStr> ToStr for Mat3<T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
|
@ -1,5 +1,8 @@
|
||||
use core::num::Zero;
|
||||
use traits::dim::Dim;
|
||||
use traits::dot::Dot;
|
||||
use traits::sqrt::Sqrt;
|
||||
use traits::cross::Cross;
|
||||
use traits::workarounds::sqrt::Sqrt;
|
||||
|
||||
#[deriving(Eq)]
|
||||
pub struct Vec3<T>
|
||||
@ -12,6 +15,11 @@ pub struct Vec3<T>
|
||||
pub fn Vec3<T:Copy>(x: T, y: T, z: T) -> Vec3<T>
|
||||
{ Vec3 {x: x, y: y, z: z} }
|
||||
|
||||
impl<T> Dim for Vec3<T>
|
||||
{
|
||||
fn dim() -> uint
|
||||
{ 3 }
|
||||
}
|
||||
|
||||
impl<T:Copy + Add<T,T>> Add<Vec3<T>, Vec3<T>> for Vec3<T>
|
||||
{
|
||||
@ -25,18 +33,6 @@ impl<T:Copy + Sub<T,T>> Sub<Vec3<T>, Vec3<T>> for Vec3<T>
|
||||
{ Vec3(self.x - other.x, self.y - other.y, self.z - other.z) }
|
||||
}
|
||||
|
||||
impl<T:ToStr> ToStr for Vec3<T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
{
|
||||
~"Vec3 "
|
||||
+ "{ x : " + self.x.to_str()
|
||||
+ ", y : " + self.y.to_str()
|
||||
+ ", z : " + self.z.to_str()
|
||||
+ " }"
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Add<T, T> + Sqrt> Dot<T> for Vec3<T>
|
||||
{
|
||||
fn dot(&self, other : &Vec3<T>) -> T
|
||||
@ -48,3 +44,36 @@ impl<T:Copy + Mul<T, T> + Add<T, T> + Sqrt> Dot<T> for Vec3<T>
|
||||
fn norm(&self) -> T
|
||||
{ self.sqnorm().sqrt() }
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Sub<T, T>> Cross<Vec3<T>> for Vec3<T>
|
||||
{
|
||||
fn cross(&self, other : &Vec3<T>) -> Vec3<T>
|
||||
{
|
||||
Vec3(
|
||||
self.y * other.z - self.z * other.y,
|
||||
self.z * other.x - self.x * other.z,
|
||||
self.x * other.y - self.y * other.x
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:Copy + Zero> Zero for Vec3<T>
|
||||
{
|
||||
fn zero() -> Vec3<T>
|
||||
{
|
||||
let _0 = Zero::zero();
|
||||
Vec3(_0, _0, _0)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:ToStr> ToStr for Vec3<T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
{
|
||||
~"Vec3 "
|
||||
+ "{ x : " + self.x.to_str()
|
||||
+ ", y : " + self.y.to_str()
|
||||
+ ", z : " + self.z.to_str()
|
||||
+ " }"
|
||||
}
|
||||
}
|
||||
|
@ -7,11 +7,16 @@
|
||||
|
||||
extern mod std;
|
||||
|
||||
pub use dim2::vec2::Vec2;
|
||||
pub use dim3::vec3::Vec3;
|
||||
pub use dim3::mat3::Mat3;
|
||||
|
||||
pub use dim2::vec2::Vec2;
|
||||
pub use dim2::mat2::Mat2;
|
||||
pub use dim2::rotmat2::Rotmat2;
|
||||
|
||||
pub use ndim::nvec::NVec;
|
||||
pub use ndim::nmat::NMat;
|
||||
|
||||
pub use traits::dot::Dot;
|
||||
pub use traits::cross::Cross;
|
||||
pub use traits::dim::Dim;
|
||||
@ -37,6 +42,8 @@ mod dim3
|
||||
|
||||
mod ndim
|
||||
{
|
||||
mod nvec;
|
||||
mod nmat;
|
||||
}
|
||||
|
||||
mod traits
|
||||
|
187
src/ndim/nmat.rs
Normal file
187
src/ndim/nmat.rs
Normal file
@ -0,0 +1,187 @@
|
||||
use core::num::{One, Zero};
|
||||
use core::vec::{from_elem, swap};
|
||||
use traits::dim::Dim;
|
||||
use traits::inv::Inv;
|
||||
use traits::transpose::Transpose;
|
||||
// use ndim::nvec::NVec;
|
||||
|
||||
// D is a phantom type parameter, used only as a dimensional token.
|
||||
// Its allows use to encode the vector dimension at the type-level.
|
||||
// It can be anything implementing the Dim trait. However, to avoid confusion,
|
||||
// using d0, d1, d2, d3 and d4 tokens are prefered.
|
||||
#[deriving(Eq)]
|
||||
pub struct NMat<D, T>
|
||||
{
|
||||
mij: ~[T]
|
||||
}
|
||||
|
||||
impl<D: Dim, T: Copy> NMat<D, T>
|
||||
{
|
||||
fn offset(i: uint, j: uint) -> uint
|
||||
{ i * Dim::dim::<D>() + j }
|
||||
|
||||
fn set(&mut self, i: uint, j: uint, t: &T)
|
||||
{ self.mij[NMat::offset::<D, T>(i, j)] = *t }
|
||||
}
|
||||
|
||||
impl<D: Dim, T> Dim for NMat<D, T>
|
||||
{
|
||||
fn dim() -> uint
|
||||
{ Dim::dim::<D>() }
|
||||
}
|
||||
|
||||
impl<D: Dim, T:Copy> Index<(uint, uint), T> for NMat<D, T>
|
||||
{
|
||||
fn index(&self, &(i, j): &(uint, uint)) -> T
|
||||
{ self.mij[NMat::offset::<D, T>(i, j)] }
|
||||
}
|
||||
|
||||
impl<D: Dim, T:Copy + One + Zero> One for NMat<D, T>
|
||||
{
|
||||
fn one() -> NMat<D, T>
|
||||
{
|
||||
let dim = Dim::dim::<D>();
|
||||
let mut res = NMat{ mij: from_elem(dim * dim, Zero::zero()) };
|
||||
let _1 = One::one::<T>();
|
||||
|
||||
for uint::range(0u, dim) |i|
|
||||
{ res.set(i, i, &_1); }
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T:Copy + Zero> Zero for NMat<D, T>
|
||||
{
|
||||
fn zero() -> NMat<D, T>
|
||||
{
|
||||
let dim = Dim::dim::<D>();
|
||||
|
||||
NMat{ mij: from_elem(dim * dim, Zero::zero()) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T:Copy + Mul<T, T> + Add<T, T> + Zero>
|
||||
Mul<NMat<D, T>, NMat<D, T>> for NMat<D, T>
|
||||
{
|
||||
fn mul(&self, other: &NMat<D, T>) -> NMat<D, T>
|
||||
{
|
||||
let dim = Dim::dim::<D>();
|
||||
let mut res = Zero::zero::<NMat<D, T>>();
|
||||
|
||||
for uint::range(0u, dim) |i|
|
||||
{
|
||||
for uint::range(0u, dim) |j|
|
||||
{
|
||||
let mut acc: T = Zero::zero();
|
||||
|
||||
for uint::range(0u, dim) |k|
|
||||
{ acc += self[(i, k)] * other[(k, j)]; }
|
||||
|
||||
res.set(i, j, &acc);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim,
|
||||
T: Copy + Mul<T, T> + Div<T, T> + Sub<T, T> + Neg<T> + Eq + One + Zero>
|
||||
Inv for NMat<D, T>
|
||||
{
|
||||
fn inv(&self) -> NMat<D, T>
|
||||
{
|
||||
let mut cpy = copy *self;
|
||||
let dim = Dim::dim::<D>();
|
||||
let mut res = One::one::<NMat<D, T>>();
|
||||
let _0T = Zero::zero::<T>();
|
||||
|
||||
// inversion using Gauss-Jordan elimination
|
||||
for uint::range(0u, dim) |k|
|
||||
{
|
||||
// search a non-zero value on the k-th column
|
||||
// FIXME: is it worth it to spend some more time searching for the max
|
||||
// instead?
|
||||
|
||||
// FIXME: this is kind of uggly…
|
||||
// … but we cannot use position_betwee since we are iterating on one
|
||||
// columns
|
||||
let mut n0 = dim; // index of a non-zero entry
|
||||
|
||||
for uint::range(k, dim) |i|
|
||||
{
|
||||
n0 = k;
|
||||
|
||||
if (cpy[(i, k)] != _0T)
|
||||
{ break; }
|
||||
}
|
||||
|
||||
assert!(n0 != dim); // non inversible matrix
|
||||
|
||||
// swap pivot line
|
||||
for uint::range(0u, dim) |j|
|
||||
{
|
||||
swap(cpy.mij, NMat::offset::<D, T>(n0, j), NMat::offset::<D, T>(k, j));
|
||||
swap(res.mij, NMat::offset::<D, T>(n0, j), NMat::offset::<D, T>(k, j));
|
||||
}
|
||||
|
||||
let pivot = cpy[(k, k)];
|
||||
|
||||
for uint::range(k, dim) |j|
|
||||
{
|
||||
cpy.set(k, j, &(cpy[(k, j)] / pivot));
|
||||
res.set(k, j, &(res[(k, j)] / pivot));
|
||||
}
|
||||
|
||||
for uint::range(0u, dim) |l|
|
||||
{
|
||||
if (l != k)
|
||||
{
|
||||
let normalizer = cpy[(l, k)] / pivot;
|
||||
|
||||
for uint::range(k, dim) |j|
|
||||
{
|
||||
cpy.set(k, j, &(cpy[(l, j)] - cpy[(k, j)] * normalizer));
|
||||
res.set(k, j, &(res[(l, j)] - res[(k, j)] * normalizer));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T:Copy> Transpose for NMat<D, T>
|
||||
{
|
||||
fn transposed(&self) -> NMat<D, T>
|
||||
{
|
||||
let mut res = copy *self;
|
||||
|
||||
res.transpose();
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn transpose(&mut self)
|
||||
{
|
||||
let dim = Dim::dim::<D>();
|
||||
|
||||
for uint::range(1u, dim) |i|
|
||||
{
|
||||
for uint::range(0u, dim - 1) |j|
|
||||
{
|
||||
swap(self.mij,
|
||||
NMat::offset::<D, T>(i, j),
|
||||
NMat::offset::<D, T>(j, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T:ToStr> ToStr for NMat<D, T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
{ ~"Mat" + Dim::dim::<D>().to_str() + " {" + self.mij.to_str() + " }" }
|
||||
}
|
79
src/ndim/nvec.rs
Normal file
79
src/ndim/nvec.rs
Normal file
@ -0,0 +1,79 @@
|
||||
use core::vec::{map2, from_elem};
|
||||
use core::num::Zero;
|
||||
use traits::dim::Dim;
|
||||
use traits::dot::Dot;
|
||||
use traits::workarounds::sqrt::Sqrt;
|
||||
|
||||
// D is a phantom parameter, used only as a dimensional token.
|
||||
// Its allows use to encode the vector dimension at the type-level.
|
||||
// It can be anything implementing the Dim trait. However, to avoid confusion,
|
||||
// using d0, d1, d2, d3 and d4 tokens are prefered.
|
||||
// FIXME: it might be possible to implement type-level integers and use them
|
||||
// here?
|
||||
#[deriving(Eq)]
|
||||
pub struct NVec<D, T>
|
||||
{
|
||||
at: ~[T]
|
||||
}
|
||||
|
||||
|
||||
impl<D: Dim, T> Dim for NVec<D, T>
|
||||
{
|
||||
fn dim() -> uint
|
||||
{ Dim::dim::<D>() }
|
||||
}
|
||||
|
||||
impl<D, T:Copy + Add<T,T>> Add<NVec<D, T>, NVec<D, T>> for NVec<D, T>
|
||||
{
|
||||
fn add(&self, other: &NVec<D, T>) -> NVec<D, T>
|
||||
{ NVec { at: map2(self.at, other.at, | a, b | { *a + *b }) } }
|
||||
}
|
||||
|
||||
impl<D, T:Copy + Sub<T,T>> Sub<NVec<D, T>, NVec<D, T>> for NVec<D, T>
|
||||
{
|
||||
fn sub(&self, other: &NVec<D, T>) -> NVec<D, T>
|
||||
{ NVec { at: map2(self.at, other.at, | a, b | *a - *b) } }
|
||||
}
|
||||
|
||||
impl<D: Dim, T:Copy + Mul<T, T> + Add<T, T> + Sqrt + Zero> Dot<T> for NVec<D, T>
|
||||
{
|
||||
fn dot(&self, other: &NVec<D, T>) -> T
|
||||
{
|
||||
let mut res = Zero::zero::<T>();
|
||||
|
||||
for uint::range(0u, Dim::dim::<D>()) |i|
|
||||
{ res += self.at[i] * other.at[i]; }
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn sqnorm(&self) -> T
|
||||
{ self.dot(self) }
|
||||
|
||||
fn norm(&self) -> T
|
||||
{ self.sqnorm().sqrt() }
|
||||
}
|
||||
|
||||
// FIXME: I dont really know how te generalize the cross product int
|
||||
// n-dimensions…
|
||||
// impl<T:Copy + Mul<T, T> + Sub<T, T>> Cross<T> for NVec<D, T>
|
||||
// {
|
||||
// fn cross(&self, other: &NVec<D, T>) -> T
|
||||
// { self.x * other.y - self.y * other.x }
|
||||
// }
|
||||
|
||||
impl<D: Dim, T:Copy + Zero> Zero for NVec<D, T>
|
||||
{
|
||||
fn zero() -> NVec<D, T>
|
||||
{
|
||||
let _0 = Zero::zero();
|
||||
|
||||
NVec { at: from_elem(Dim::dim::<D>(), _0) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T:ToStr> ToStr for NVec<D, T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
{ ~"Vec" + Dim::dim::<D>().to_str() + self.at.to_str() }
|
||||
}
|
@ -2,3 +2,26 @@ pub trait Dim
|
||||
{
|
||||
fn dim() -> uint;
|
||||
}
|
||||
|
||||
// Some dimension token. Useful to restrict the dimension of n-dimensional
|
||||
// object at the type-level.
|
||||
pub struct d0;
|
||||
pub struct d1;
|
||||
pub struct d2;
|
||||
pub struct d3;
|
||||
pub struct d4;
|
||||
|
||||
impl Dim for d0
|
||||
{ fn dim() -> uint { 0 } }
|
||||
|
||||
impl Dim for d1
|
||||
{ fn dim() -> uint { 1 } }
|
||||
|
||||
impl Dim for d2
|
||||
{ fn dim() -> uint { 2 } }
|
||||
|
||||
impl Dim for d3
|
||||
{ fn dim() -> uint { 3 } }
|
||||
|
||||
impl Dim for d4
|
||||
{ fn dim() -> uint { 4 } }
|
||||
|
@ -1,4 +1,4 @@
|
||||
pub trait Inv<T>
|
||||
pub trait Inv
|
||||
{
|
||||
fn inv(&self) -> Self;
|
||||
}
|
||||
|
@ -1,17 +0,0 @@
|
||||
// FIXME: this does not seem to exist already
|
||||
// but it will surely be added someday.
|
||||
|
||||
pub trait Sqrt
|
||||
{
|
||||
fn sqrt(&self) -> Self;
|
||||
}
|
||||
|
||||
impl Sqrt for f64
|
||||
{
|
||||
fn sqrt(&self) -> f64 { f64::sqrt(*self) }
|
||||
}
|
||||
|
||||
impl Sqrt for f32
|
||||
{
|
||||
fn sqrt(&self) -> f32 { f32::sqrt(*self) }
|
||||
}
|
Loading…
Reference in New Issue
Block a user