From 97a79a994b9b7d78c14966c8a580c34016e02011 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?S=C3=A9bastien=20Crozet?= Date: Wed, 6 Oct 2021 10:44:46 +0200 Subject: [PATCH] Add methods to compute the products of a single matrix components/rows/columns --- CHANGELOG.md | 2 + src/base/statistics.rs | 134 ++++++++++++++++++++++++++++++++++++++--- 2 files changed, 129 insertions(+), 7 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 41c6921f..b248ab25 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -11,6 +11,8 @@ This project adheres to [Semantic Versioning](https://semver.org/). - The conversion trait `From>` and method `from_vec_storage` for `RowDVector`. See [#975](https://github.com/dimforge/nalgebra/issues/975) - Added implementation of `From` and `Into` for converting between `nalgebra` types and types from `glam 0.18`. These can be enabled by enabling the `convert-glam018` cargo features. +- Added the methods `Matrix::product`, `::row_product`, `::row_product_tr`, and `::column_product` to compute the + product of the components, rows, or columns, of a single matrix or vector. ## [0.29.0] ### Breaking changes diff --git a/src/base/statistics.rs b/src/base/statistics.rs index fc623c29..320cd12f 100644 --- a/src/base/statistics.rs +++ b/src/base/statistics.rs @@ -1,8 +1,8 @@ use crate::allocator::Allocator; use crate::storage::RawStorage; use crate::{Const, DefaultAllocator, Dim, Matrix, OVector, RowOVector, Scalar, VectorSlice, U1}; -use num::Zero; -use simba::scalar::{ClosedAdd, Field, SupersetOf}; +use num::{One, Zero}; +use simba::scalar::{ClosedAdd, ClosedMul, Field, SupersetOf}; use std::mem::MaybeUninit; /// # Folding on columns and rows @@ -123,7 +123,9 @@ impl> Matrix { /// 4.0, 5.0, 6.0); /// assert_eq!(m.row_sum(), RowVector3::new(5.0, 7.0, 9.0)); /// - /// let mint = Matrix3x2::new(1,2,3,4,5,6); + /// let mint = Matrix3x2::new(1, 2, + /// 3, 4, + /// 5, 6); /// assert_eq!(mint.row_sum(), RowVector2::new(9,12)); /// ``` #[inline] @@ -148,8 +150,10 @@ impl> Matrix { /// 4.0, 5.0, 6.0); /// assert_eq!(m.row_sum_tr(), Vector3::new(5.0, 7.0, 9.0)); /// - /// let mint = Matrix3x2::new(1,2,3,4,5,6); - /// assert_eq!(mint.row_sum_tr(), Vector2::new(9,12)); + /// let mint = Matrix3x2::new(1, 2, + /// 3, 4, + /// 5, 6); + /// assert_eq!(mint.row_sum_tr(), Vector2::new(9, 12)); /// ``` #[inline] #[must_use] @@ -173,8 +177,10 @@ impl> Matrix { /// 4.0, 5.0, 6.0); /// assert_eq!(m.column_sum(), Vector2::new(6.0, 15.0)); /// - /// let mint = Matrix3x2::new(1,2,3,4,5,6); - /// assert_eq!(mint.column_sum(), Vector3::new(3,7,11)); + /// let mint = Matrix3x2::new(1, 2, + /// 3, 4, + /// 5, 6); + /// assert_eq!(mint.column_sum(), Vector3::new(3, 7, 11)); /// ``` #[inline] #[must_use] @@ -189,6 +195,120 @@ impl> Matrix { }) } + /* + * + * Product computation. + * + */ + /// The product of all the elements of this matrix. + /// + /// # Example + /// + /// ``` + /// # use nalgebra::Matrix2x3; + /// + /// let m = Matrix2x3::new(1.0, 2.0, 3.0, + /// 4.0, 5.0, 6.0); + /// assert_eq!(m.product(), 720.0); + /// ``` + #[inline] + #[must_use] + pub fn product(&self) -> T + where + T: ClosedMul + One, + { + self.iter().cloned().fold(T::one(), |a, b| a * b) + } + + /// The product of all the rows of this matrix. + /// + /// Use `.row_sum_tr` if you need the result in a column vector instead. + /// + /// # Example + /// + /// ``` + /// # use nalgebra::{Matrix2x3, Matrix3x2}; + /// # use nalgebra::{RowVector2, RowVector3}; + /// + /// let m = Matrix2x3::new(1.0, 2.0, 3.0, + /// 4.0, 5.0, 6.0); + /// assert_eq!(m.row_product(), RowVector3::new(4.0, 10.0, 18.0)); + /// + /// let mint = Matrix3x2::new(1, 2, + /// 3, 4, + /// 5, 6); + /// assert_eq!(mint.row_product(), RowVector2::new(15, 48)); + /// ``` + #[inline] + #[must_use] + pub fn row_product(&self) -> RowOVector + where + T: ClosedMul + One, + DefaultAllocator: Allocator, + { + self.compress_rows(|col| col.product()) + } + + /// The product of all the rows of this matrix. The result is transposed and returned as a column vector. + /// + /// # Example + /// + /// ``` + /// # use nalgebra::{Matrix2x3, Matrix3x2}; + /// # use nalgebra::{Vector2, Vector3}; + /// + /// let m = Matrix2x3::new(1.0, 2.0, 3.0, + /// 4.0, 5.0, 6.0); + /// assert_eq!(m.row_product_tr(), Vector3::new(4.0, 10.0, 18.0)); + /// + /// let mint = Matrix3x2::new(1, 2, + /// 3, 4, + /// 5, 6); + /// assert_eq!(mint.row_product_tr(), Vector2::new(15, 48)); + /// ``` + #[inline] + #[must_use] + pub fn row_product_tr(&self) -> OVector + where + T: ClosedMul + One, + DefaultAllocator: Allocator, + { + self.compress_rows_tr(|col| col.product()) + } + + /// The product of all the columns of this matrix. + /// + /// # Example + /// + /// ``` + /// # use nalgebra::{Matrix2x3, Matrix3x2}; + /// # use nalgebra::{Vector2, Vector3}; + /// + /// let m = Matrix2x3::new(1.0, 2.0, 3.0, + /// 4.0, 5.0, 6.0); + /// assert_eq!(m.column_product(), Vector2::new(6.0, 120.0)); + /// + /// let mint = Matrix3x2::new(1, 2, + /// 3, 4, + /// 5, 6); + /// assert_eq!(mint.column_product(), Vector3::new(2, 12, 30)); + /// ``` + #[inline] + #[must_use] + pub fn column_product(&self) -> OVector + where + T: ClosedMul + One, + DefaultAllocator: Allocator, + { + let nrows = self.shape_generic().0; + self.compress_columns( + OVector::repeat_generic(nrows, Const::<1>, T::one()), + |out, col| { + out.component_mul_assign(&col); + }, + ) + } + /* * * Variance computation.