forked from M-Labs/nalgebra
Quaternionic division + refactoring (#563)
This commit is contained in:
parent
f916dae6ed
commit
1e614db227
@ -225,7 +225,7 @@ impl<T: Neg> Neg for Unit<T> {
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> Self::Output {
|
||||
Unit::new_unchecked(-self.value)
|
||||
Self::Output::new_unchecked(-self.value)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -528,7 +528,7 @@ impl<N: Real> Quaternion<N> {
|
||||
/// Check if the quaternion is pure.
|
||||
#[inline]
|
||||
pub fn is_pure(&self) -> bool {
|
||||
self.w == N::zero()
|
||||
self.w.is_zero()
|
||||
}
|
||||
|
||||
/// Convert quaternion to pure quaternion.
|
||||
@ -537,6 +537,33 @@ impl<N: Real> Quaternion<N> {
|
||||
Self::from_imag(self.imag())
|
||||
}
|
||||
|
||||
/// Left quaternionic division.
|
||||
///
|
||||
/// Calculates B<sup>-1</sup> * A where A = self, B = other.
|
||||
#[inline]
|
||||
pub fn left_div(&self, other: &Self) -> Option<Self> {
|
||||
other.try_inverse().map(|inv| inv * self)
|
||||
}
|
||||
|
||||
/// Right quaternionic division.
|
||||
///
|
||||
/// Calculates A * B<sup>-1</sup> where A = self, B = other.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let a = Quaternion::new(0.0, 1.0, 2.0, 3.0);
|
||||
/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
|
||||
/// let result = a.right_div(&b).unwrap();
|
||||
/// let expected = Quaternion::new(0.4, 0.13333333333333336, -0.4666666666666667, 0.26666666666666666);
|
||||
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn right_div(&self, other: &Self) -> Option<Self> {
|
||||
other.try_inverse().map(|inv| self * inv)
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic cosinus.
|
||||
///
|
||||
/// # Example
|
||||
@ -626,11 +653,7 @@ impl<N: Real> Quaternion<N> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn tan(&self) -> Self {
|
||||
let s = self.sin();
|
||||
let c = self.cos();
|
||||
|
||||
let ci = c.try_inverse().unwrap();
|
||||
s * ci
|
||||
self.sin().right_div(&self.cos()).unwrap()
|
||||
}
|
||||
|
||||
/// Calculates the quaternionic arctangent.
|
||||
@ -648,7 +671,7 @@ impl<N: Real> Quaternion<N> {
|
||||
let u = Self::from_imag(self.imag().normalize());
|
||||
let num = u + self;
|
||||
let den = u - self;
|
||||
let fr = num * den.try_inverse().unwrap();
|
||||
let fr = num.right_div(&den).unwrap();
|
||||
let ln = fr.ln();
|
||||
(u.half()) * ln
|
||||
}
|
||||
@ -732,11 +755,7 @@ impl<N: Real> Quaternion<N> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn tanh(&self) -> Self {
|
||||
let s = self.sinh();
|
||||
let c = self.cosh();
|
||||
|
||||
let ci = c.try_inverse().unwrap();
|
||||
s * ci
|
||||
self.sinh().right_div(&self.cosh()).unwrap()
|
||||
}
|
||||
|
||||
/// Calculates the hyperbolic quaternionic arctangent.
|
||||
@ -1096,11 +1115,7 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn axis_angle(&self) -> Option<(Unit<Vector3<N>>, N)> {
|
||||
if let Some(axis) = self.axis() {
|
||||
Some((axis, self.angle()))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
self.axis().map(|axis| (axis, self.angle()))
|
||||
}
|
||||
|
||||
/// Compute the exponential of a quaternion.
|
||||
|
@ -71,6 +71,12 @@ impl<N: Real> Quaternion<N> {
|
||||
Self::new(scalar, vector[0], vector[1], vector[2])
|
||||
}
|
||||
|
||||
/// Constructs a real quaternion.
|
||||
#[inline]
|
||||
pub fn from_real(r: N) -> Self {
|
||||
Self::from_parts(r, Vector3::zero())
|
||||
}
|
||||
|
||||
/// Creates a new quaternion from its polar decomposition.
|
||||
///
|
||||
/// Note that `axis` is assumed to be a unit vector.
|
||||
@ -95,7 +101,7 @@ impl<N: Real> Quaternion<N> {
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn identity() -> Self {
|
||||
Self::from_parts(N::one(), Vector3::zero())
|
||||
Self::from_real(N::one())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -552,7 +552,7 @@ impl<N: Real> Neg for Quaternion<N> {
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> Self::Output {
|
||||
Quaternion::from(-self.coords)
|
||||
Self::Output::from(-self.coords)
|
||||
}
|
||||
}
|
||||
|
||||
@ -561,7 +561,7 @@ impl<'a, N: Real> Neg for &'a Quaternion<N> {
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> Self::Output {
|
||||
Quaternion::from(-&self.coords)
|
||||
Self::Output::from(-&self.coords)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -36,7 +36,7 @@ impl<N: Real, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||||
0 => true,
|
||||
1 => {
|
||||
let determinant = self.get_unchecked((0, 0)).clone();
|
||||
if determinant == N::zero() {
|
||||
if determinant.is_zero() {
|
||||
false
|
||||
} else {
|
||||
*self.get_unchecked_mut((0, 0)) = N::one() / determinant;
|
||||
@ -51,7 +51,7 @@ impl<N: Real, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||||
|
||||
let determinant = m11 * m22 - m21 * m12;
|
||||
|
||||
if determinant == N::zero() {
|
||||
if determinant.is_zero() {
|
||||
false
|
||||
} else {
|
||||
*self.get_unchecked_mut((0, 0)) = m22 / determinant;
|
||||
@ -83,7 +83,7 @@ impl<N: Real, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||||
let determinant =
|
||||
m11 * minor_m12_m23 - m12 * minor_m11_m23 + m13 * minor_m11_m22;
|
||||
|
||||
if determinant == N::zero() {
|
||||
if determinant.is_zero() {
|
||||
false
|
||||
} else {
|
||||
*self.get_unchecked_mut((0, 0)) = minor_m12_m23 / determinant;
|
||||
|
Loading…
Reference in New Issue
Block a user