forked from M-Labs/nalgebra
Memory improvements, extra comments.
The result of `multiplier ^ 2` is now written into a single buffer.
This commit is contained in:
parent
06b657ad49
commit
15a63cb892
@ -10,18 +10,38 @@ impl<N: ComplexField, D> MatrixN<N, D>
|
|||||||
where
|
where
|
||||||
D: DimMin<D, Output = D>,
|
D: DimMin<D, Output = D>,
|
||||||
DefaultAllocator: Allocator<N, D, D>,
|
DefaultAllocator: Allocator<N, D, D>,
|
||||||
|
DefaultAllocator: Allocator<N, D>,
|
||||||
{
|
{
|
||||||
/// Attempts to raise this matrix to an integer power in-place. Returns
|
/// Computes the square of this matrix and writes it into a given buffer.
|
||||||
/// `false` and leaves `self` untouched if the power is negative and the
|
fn square_buf(&mut self, buf: &mut Self) {
|
||||||
/// matrix is non-invertible.
|
// We unroll the first iteration to avoid new_uninitialized.
|
||||||
|
let mut aux_col = self.column(0).clone_owned();
|
||||||
|
aux_col = &*self * aux_col;
|
||||||
|
buf.column_mut(0).copy_from(&aux_col);
|
||||||
|
|
||||||
|
// We multiply the matrix by its i-th column,
|
||||||
|
for i in 1..self.ncols() {
|
||||||
|
aux_col.copy_from(&self.column(i));
|
||||||
|
aux_col = &*self * aux_col;
|
||||||
|
self.column_mut(i).copy_from(&aux_col);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Attempts to raise this matrix to an integral power `e` in-place. If this
|
||||||
|
/// matrix is non-invertible and `e` is negative, it leaves this matrix
|
||||||
|
/// untouched and returns `false`. Otherwise, it returns `true` and
|
||||||
|
/// overwrites this matrix with the result.
|
||||||
pub fn pow_mut<T: PrimInt + DivAssign>(&mut self, mut e: T) -> bool {
|
pub fn pow_mut<T: PrimInt + DivAssign>(&mut self, mut e: T) -> bool {
|
||||||
let zero = T::zero();
|
let zero = T::zero();
|
||||||
|
|
||||||
|
// A matrix raised to the zeroth power is just the identity.
|
||||||
if e == zero {
|
if e == zero {
|
||||||
self.fill_with_identity();
|
self.fill_with_identity();
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// If e is negative, we compute the inverse matrix, then raise it to the
|
||||||
|
// power of -e.
|
||||||
if e < zero {
|
if e < zero {
|
||||||
if !self.try_inverse_mut() {
|
if !self.try_inverse_mut() {
|
||||||
return false;
|
return false;
|
||||||
@ -30,22 +50,31 @@ where
|
|||||||
|
|
||||||
let one = T::one();
|
let one = T::one();
|
||||||
let two = T::from(2u8).unwrap();
|
let two = T::from(2u8).unwrap();
|
||||||
let mut multiplier = self.clone();
|
|
||||||
|
|
||||||
while e != zero {
|
// We use the buffer to hold the result of multiplier ^ 2, thus avoiding
|
||||||
|
// extra allocations.
|
||||||
|
let mut multiplier = self.clone();
|
||||||
|
let mut buf = self.clone();
|
||||||
|
|
||||||
|
// Exponentiation by squares.
|
||||||
|
loop {
|
||||||
if e % two == one {
|
if e % two == one {
|
||||||
*self *= &multiplier;
|
*self *= &multiplier;
|
||||||
}
|
}
|
||||||
|
|
||||||
e /= two;
|
e /= two;
|
||||||
multiplier *= multiplier.clone();
|
multiplier.square_buf(&mut buf);
|
||||||
|
multiplier.copy_from(&buf);
|
||||||
|
|
||||||
|
if e == zero {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
true
|
/// Attempts to raise this matrix to an integral power `e`. If this matrix
|
||||||
}
|
/// is non-invertible and `e` is negative, it returns `None`. Otherwise, it
|
||||||
|
/// returns the result as a new matrix. Uses exponentiation by squares.
|
||||||
/// Raise this matrix to an integer power. Returns `None` only if the power
|
|
||||||
/// is negative and the matrix is non-invertible.
|
|
||||||
pub fn pow<T: PrimInt + DivAssign>(&self, e: T) -> Option<Self> {
|
pub fn pow<T: PrimInt + DivAssign>(&self, e: T) -> Option<Self> {
|
||||||
let mut clone = self.clone();
|
let mut clone = self.clone();
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user