forked from M-Labs/nalgebra
Merge branch 'dev' of https://github.com/dimforge/nalgebra into dev
This commit is contained in:
commit
04a97bb79e
@ -14,6 +14,7 @@ use crate::coo::CooMatrix;
|
|||||||
use crate::cs;
|
use crate::cs;
|
||||||
use crate::csc::CscMatrix;
|
use crate::csc::CscMatrix;
|
||||||
use crate::csr::CsrMatrix;
|
use crate::csr::CsrMatrix;
|
||||||
|
use crate::utils::{apply_permutation, compute_sort_permutation};
|
||||||
|
|
||||||
/// Converts a dense matrix to [`CooMatrix`].
|
/// Converts a dense matrix to [`CooMatrix`].
|
||||||
pub fn convert_dense_coo<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CooMatrix<T>
|
pub fn convert_dense_coo<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CooMatrix<T>
|
||||||
@ -376,29 +377,12 @@ fn sort_lane<T: Clone>(
|
|||||||
assert_eq!(values.len(), workspace.len());
|
assert_eq!(values.len(), workspace.len());
|
||||||
|
|
||||||
let permutation = workspace;
|
let permutation = workspace;
|
||||||
// Set permutation to identity
|
compute_sort_permutation(permutation, minor_idx);
|
||||||
for (i, p) in permutation.iter_mut().enumerate() {
|
|
||||||
*p = i;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute permutation needed to bring minor indices into sorted order
|
|
||||||
// Note: Using sort_unstable here avoids internal allocations, which is crucial since
|
|
||||||
// each lane might have a small number of elements
|
|
||||||
permutation.sort_unstable_by_key(|idx| minor_idx[*idx]);
|
|
||||||
|
|
||||||
apply_permutation(minor_idx_result, minor_idx, permutation);
|
apply_permutation(minor_idx_result, minor_idx, permutation);
|
||||||
apply_permutation(values_result, values, permutation);
|
apply_permutation(values_result, values, permutation);
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: Move this into `utils` or something?
|
|
||||||
fn apply_permutation<T: Clone>(out_slice: &mut [T], in_slice: &[T], permutation: &[usize]) {
|
|
||||||
assert_eq!(out_slice.len(), in_slice.len());
|
|
||||||
assert_eq!(out_slice.len(), permutation.len());
|
|
||||||
for (out_element, old_pos) in out_slice.iter_mut().zip(permutation) {
|
|
||||||
*out_element = in_slice[*old_pos].clone();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Given *sorted* indices and corresponding scalar values, combines duplicates with the given
|
/// Given *sorted* indices and corresponding scalar values, combines duplicates with the given
|
||||||
/// associative combiner and calls the provided produce methods with combined indices and values.
|
/// associative combiner and calls the provided produce methods with combined indices and values.
|
||||||
fn combine_duplicates<T: Clone>(
|
fn combine_duplicates<T: Clone>(
|
||||||
|
@ -6,7 +6,8 @@ use num_traits::One;
|
|||||||
use nalgebra::Scalar;
|
use nalgebra::Scalar;
|
||||||
|
|
||||||
use crate::pattern::SparsityPattern;
|
use crate::pattern::SparsityPattern;
|
||||||
use crate::{SparseEntry, SparseEntryMut};
|
use crate::utils::{apply_permutation, compute_sort_permutation};
|
||||||
|
use crate::{SparseEntry, SparseEntryMut, SparseFormatError, SparseFormatErrorKind};
|
||||||
|
|
||||||
/// An abstract compressed matrix.
|
/// An abstract compressed matrix.
|
||||||
///
|
///
|
||||||
@ -543,3 +544,151 @@ pub fn convert_counts_to_offsets(counts: &mut [usize]) {
|
|||||||
offset += count;
|
offset += count;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Validates cs data, optionally sorts minor indices and values
|
||||||
|
pub(crate) fn validate_and_optionally_sort_cs_data<T>(
|
||||||
|
major_dim: usize,
|
||||||
|
minor_dim: usize,
|
||||||
|
major_offsets: &[usize],
|
||||||
|
minor_indices: &mut [usize],
|
||||||
|
values: Option<&mut [T]>,
|
||||||
|
sort: bool,
|
||||||
|
) -> Result<(), SparseFormatError>
|
||||||
|
where
|
||||||
|
T: Scalar,
|
||||||
|
{
|
||||||
|
let mut values_option = values;
|
||||||
|
|
||||||
|
if let Some(values) = values_option.as_mut() {
|
||||||
|
if minor_indices.len() != values.len() {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::InvalidStructure,
|
||||||
|
"Number of values and minor indices must be the same.",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
} else if sort {
|
||||||
|
unreachable!("Internal error: Sorting currently not supported if no values are present.");
|
||||||
|
}
|
||||||
|
if major_offsets.len() == 0 {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::InvalidStructure,
|
||||||
|
"Number of offsets should be greater than 0.",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
if major_offsets.len() != major_dim + 1 {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::InvalidStructure,
|
||||||
|
"Length of offset array is not equal to (major_dim + 1).",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check that the first and last offsets conform to the specification
|
||||||
|
{
|
||||||
|
let first_offset_ok = *major_offsets.first().unwrap() == 0;
|
||||||
|
let last_offset_ok = *major_offsets.last().unwrap() == minor_indices.len();
|
||||||
|
if !first_offset_ok || !last_offset_ok {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::InvalidStructure,
|
||||||
|
"First or last offset is incompatible with format.",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Set up required buffers up front
|
||||||
|
let mut minor_idx_buffer: Vec<usize> = Vec::new();
|
||||||
|
let mut values_buffer: Vec<T> = Vec::new();
|
||||||
|
let mut minor_index_permutation: Vec<usize> = Vec::new();
|
||||||
|
|
||||||
|
// Test that each lane has strictly monotonically increasing minor indices, i.e.
|
||||||
|
// minor indices within a lane are sorted, unique. Sort minor indices within a lane if needed.
|
||||||
|
// In addition, each minor index must be in bounds with respect to the minor dimension.
|
||||||
|
{
|
||||||
|
for lane_idx in 0..major_dim {
|
||||||
|
let range_start = major_offsets[lane_idx];
|
||||||
|
let range_end = major_offsets[lane_idx + 1];
|
||||||
|
|
||||||
|
// Test that major offsets are monotonically increasing
|
||||||
|
if range_start > range_end {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::InvalidStructure,
|
||||||
|
"Offsets are not monotonically increasing.",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
let minor_idx_in_lane = minor_indices.get(range_start..range_end).ok_or(
|
||||||
|
SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::IndexOutOfBounds,
|
||||||
|
"A major offset is out of bounds.",
|
||||||
|
),
|
||||||
|
)?;
|
||||||
|
|
||||||
|
// We test for in-bounds, uniqueness and monotonicity at the same time
|
||||||
|
// to ensure that we only visit each minor index once
|
||||||
|
let mut prev = None;
|
||||||
|
let mut monotonic = true;
|
||||||
|
|
||||||
|
for &minor_idx in minor_idx_in_lane {
|
||||||
|
if minor_idx >= minor_dim {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::IndexOutOfBounds,
|
||||||
|
"A minor index is out of bounds.",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
if let Some(prev) = prev {
|
||||||
|
if prev >= minor_idx {
|
||||||
|
if !sort {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::InvalidStructure,
|
||||||
|
"Minor indices are not strictly monotonically increasing in each lane.",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
monotonic = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
prev = Some(minor_idx);
|
||||||
|
}
|
||||||
|
|
||||||
|
// sort if indices are not monotonic and sorting is expected
|
||||||
|
if !monotonic && sort {
|
||||||
|
let range_size = range_end - range_start;
|
||||||
|
minor_index_permutation.resize(range_size, 0);
|
||||||
|
compute_sort_permutation(&mut minor_index_permutation, &minor_idx_in_lane);
|
||||||
|
minor_idx_buffer.clear();
|
||||||
|
minor_idx_buffer.extend_from_slice(&minor_idx_in_lane);
|
||||||
|
apply_permutation(
|
||||||
|
&mut minor_indices[range_start..range_end],
|
||||||
|
&minor_idx_buffer,
|
||||||
|
&minor_index_permutation,
|
||||||
|
);
|
||||||
|
|
||||||
|
// check duplicates
|
||||||
|
prev = None;
|
||||||
|
for &minor_idx in &minor_indices[range_start..range_end] {
|
||||||
|
if let Some(prev) = prev {
|
||||||
|
if prev == minor_idx {
|
||||||
|
return Err(SparseFormatError::from_kind_and_msg(
|
||||||
|
SparseFormatErrorKind::DuplicateEntry,
|
||||||
|
"Input data contains duplicate entries.",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
prev = Some(minor_idx);
|
||||||
|
}
|
||||||
|
|
||||||
|
// sort values if they exist
|
||||||
|
if let Some(values) = values_option.as_mut() {
|
||||||
|
values_buffer.clear();
|
||||||
|
values_buffer.extend_from_slice(&values[range_start..range_end]);
|
||||||
|
apply_permutation(
|
||||||
|
&mut values[range_start..range_end],
|
||||||
|
&values_buffer,
|
||||||
|
&minor_index_permutation,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
@ -6,6 +6,7 @@
|
|||||||
#[cfg(feature = "serde-serialize")]
|
#[cfg(feature = "serde-serialize")]
|
||||||
mod csc_serde;
|
mod csc_serde;
|
||||||
|
|
||||||
|
use crate::cs;
|
||||||
use crate::cs::{CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
|
use crate::cs::{CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
|
||||||
use crate::csr::CsrMatrix;
|
use crate::csr::CsrMatrix;
|
||||||
use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter};
|
use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter};
|
||||||
@ -173,6 +174,50 @@ impl<T> CscMatrix<T> {
|
|||||||
Self::try_from_pattern_and_values(pattern, values)
|
Self::try_from_pattern_and_values(pattern, values)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Try to construct a CSC matrix from raw CSC data with unsorted row indices.
|
||||||
|
///
|
||||||
|
/// It is assumed that each column contains unique row indices that are in
|
||||||
|
/// bounds with respect to the number of rows in the matrix. If this is not the case,
|
||||||
|
/// an error is returned to indicate the failure.
|
||||||
|
///
|
||||||
|
/// An error is returned if the data given does not conform to the CSC storage format
|
||||||
|
/// with the exception of having unsorted row indices and values.
|
||||||
|
/// See the documentation for [CscMatrix](struct.CscMatrix.html) for more information.
|
||||||
|
pub fn try_from_unsorted_csc_data(
|
||||||
|
num_rows: usize,
|
||||||
|
num_cols: usize,
|
||||||
|
col_offsets: Vec<usize>,
|
||||||
|
mut row_indices: Vec<usize>,
|
||||||
|
mut values: Vec<T>,
|
||||||
|
) -> Result<Self, SparseFormatError>
|
||||||
|
where
|
||||||
|
T: Scalar,
|
||||||
|
{
|
||||||
|
let result = cs::validate_and_optionally_sort_cs_data(
|
||||||
|
num_cols,
|
||||||
|
num_rows,
|
||||||
|
&col_offsets,
|
||||||
|
&mut row_indices,
|
||||||
|
Some(&mut values),
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
|
||||||
|
match result {
|
||||||
|
Ok(()) => {
|
||||||
|
let pattern = unsafe {
|
||||||
|
SparsityPattern::from_offset_and_indices_unchecked(
|
||||||
|
num_cols,
|
||||||
|
num_rows,
|
||||||
|
col_offsets,
|
||||||
|
row_indices,
|
||||||
|
)
|
||||||
|
};
|
||||||
|
Self::try_from_pattern_and_values(pattern, values)
|
||||||
|
}
|
||||||
|
Err(err) => Err(err),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Try to construct a CSC matrix from a sparsity pattern and associated non-zero values.
|
/// Try to construct a CSC matrix from a sparsity pattern and associated non-zero values.
|
||||||
///
|
///
|
||||||
/// Returns an error if the number of values does not match the number of minor indices
|
/// Returns an error if the number of values does not match the number of minor indices
|
||||||
|
@ -6,6 +6,7 @@
|
|||||||
#[cfg(feature = "serde-serialize")]
|
#[cfg(feature = "serde-serialize")]
|
||||||
mod csr_serde;
|
mod csr_serde;
|
||||||
|
|
||||||
|
use crate::cs;
|
||||||
use crate::cs::{CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
|
use crate::cs::{CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
|
||||||
use crate::csc::CscMatrix;
|
use crate::csc::CscMatrix;
|
||||||
use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter};
|
use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter};
|
||||||
@ -13,7 +14,7 @@ use crate::{SparseEntry, SparseEntryMut, SparseFormatError, SparseFormatErrorKin
|
|||||||
|
|
||||||
use nalgebra::Scalar;
|
use nalgebra::Scalar;
|
||||||
use num_traits::One;
|
use num_traits::One;
|
||||||
use std::iter::FromIterator;
|
|
||||||
use std::slice::{Iter, IterMut};
|
use std::slice::{Iter, IterMut};
|
||||||
|
|
||||||
/// A CSR representation of a sparse matrix.
|
/// A CSR representation of a sparse matrix.
|
||||||
@ -187,62 +188,35 @@ impl<T> CsrMatrix<T> {
|
|||||||
num_rows: usize,
|
num_rows: usize,
|
||||||
num_cols: usize,
|
num_cols: usize,
|
||||||
row_offsets: Vec<usize>,
|
row_offsets: Vec<usize>,
|
||||||
col_indices: Vec<usize>,
|
mut col_indices: Vec<usize>,
|
||||||
values: Vec<T>,
|
mut values: Vec<T>,
|
||||||
) -> Result<Self, SparseFormatError>
|
) -> Result<Self, SparseFormatError>
|
||||||
where
|
where
|
||||||
T: Scalar,
|
T: Scalar,
|
||||||
{
|
{
|
||||||
use SparsityPatternFormatError::*;
|
let result = cs::validate_and_optionally_sort_cs_data(
|
||||||
let count = col_indices.len();
|
num_rows,
|
||||||
let mut p: Vec<usize> = (0..count).collect();
|
num_cols,
|
||||||
|
&row_offsets,
|
||||||
|
&mut col_indices,
|
||||||
|
Some(&mut values),
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
|
||||||
if col_indices.len() != values.len() {
|
match result {
|
||||||
return Err(SparseFormatError::from_kind_and_msg(
|
Ok(()) => {
|
||||||
SparseFormatErrorKind::InvalidStructure,
|
let pattern = unsafe {
|
||||||
"Number of values and column indices must be the same",
|
SparsityPattern::from_offset_and_indices_unchecked(
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
if row_offsets.len() == 0 {
|
|
||||||
return Err(SparseFormatError::from_kind_and_msg(
|
|
||||||
SparseFormatErrorKind::InvalidStructure,
|
|
||||||
"Number of offsets should be greater than 0",
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
for (index, &offset) in row_offsets[0..row_offsets.len() - 1].iter().enumerate() {
|
|
||||||
let next_offset = row_offsets[index + 1];
|
|
||||||
if next_offset > count {
|
|
||||||
return Err(SparseFormatError::from_kind_and_msg(
|
|
||||||
SparseFormatErrorKind::InvalidStructure,
|
|
||||||
"No row offset should be greater than the number of column indices",
|
|
||||||
));
|
|
||||||
}
|
|
||||||
if offset > next_offset {
|
|
||||||
return Err(NonmonotonicOffsets).map_err(pattern_format_error_to_csr_error);
|
|
||||||
}
|
|
||||||
p[offset..next_offset].sort_by(|a, b| {
|
|
||||||
let x = &col_indices[*a];
|
|
||||||
let y = &col_indices[*b];
|
|
||||||
x.partial_cmp(y).unwrap()
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
// permute indices
|
|
||||||
let sorted_col_indices: Vec<usize> =
|
|
||||||
Vec::from_iter((p.iter().map(|i| &col_indices[*i])).cloned());
|
|
||||||
|
|
||||||
// permute values
|
|
||||||
let sorted_values: Vec<T> = Vec::from_iter((p.iter().map(|i| &values[*i])).cloned());
|
|
||||||
|
|
||||||
return Self::try_from_csr_data(
|
|
||||||
num_rows,
|
num_rows,
|
||||||
num_cols,
|
num_cols,
|
||||||
row_offsets,
|
row_offsets,
|
||||||
sorted_col_indices,
|
col_indices,
|
||||||
sorted_values,
|
)
|
||||||
);
|
};
|
||||||
|
Self::try_from_pattern_and_values(pattern, values)
|
||||||
|
}
|
||||||
|
Err(err) => Err(err),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Try to construct a CSR matrix from a sparsity pattern and associated non-zero values.
|
/// Try to construct a CSR matrix from a sparsity pattern and associated non-zero values.
|
||||||
|
@ -160,6 +160,7 @@ pub mod ops;
|
|||||||
pub mod pattern;
|
pub mod pattern;
|
||||||
|
|
||||||
pub(crate) mod cs;
|
pub(crate) mod cs;
|
||||||
|
pub(crate) mod utils;
|
||||||
|
|
||||||
#[cfg(feature = "proptest-support")]
|
#[cfg(feature = "proptest-support")]
|
||||||
pub mod proptest;
|
pub mod proptest;
|
||||||
|
@ -188,6 +188,35 @@ impl SparsityPattern {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Try to construct a sparsity pattern from the given dimensions, major offsets
|
||||||
|
/// and minor indices.
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
///
|
||||||
|
/// Panics if the number of major offsets is not exactly one greater than the major dimension
|
||||||
|
/// or if major offsets do not start with 0 and end with the number of minor indices.
|
||||||
|
pub unsafe fn from_offset_and_indices_unchecked(
|
||||||
|
major_dim: usize,
|
||||||
|
minor_dim: usize,
|
||||||
|
major_offsets: Vec<usize>,
|
||||||
|
minor_indices: Vec<usize>,
|
||||||
|
) -> Self {
|
||||||
|
assert_eq!(major_offsets.len(), major_dim + 1);
|
||||||
|
|
||||||
|
// Check that the first and last offsets conform to the specification
|
||||||
|
{
|
||||||
|
let first_offset_ok = *major_offsets.first().unwrap() == 0;
|
||||||
|
let last_offset_ok = *major_offsets.last().unwrap() == minor_indices.len();
|
||||||
|
assert!(first_offset_ok && last_offset_ok);
|
||||||
|
}
|
||||||
|
|
||||||
|
Self {
|
||||||
|
major_offsets,
|
||||||
|
minor_indices,
|
||||||
|
minor_dim,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// An iterator over the explicitly stored "non-zero" entries (i, j).
|
/// An iterator over the explicitly stored "non-zero" entries (i, j).
|
||||||
///
|
///
|
||||||
/// The iteration happens in a lane-major fashion, meaning that the lane index i
|
/// The iteration happens in a lane-major fashion, meaning that the lane index i
|
||||||
|
26
nalgebra-sparse/src/utils.rs
Normal file
26
nalgebra-sparse/src/utils.rs
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
//! Helper functions for sparse matrix computations
|
||||||
|
|
||||||
|
/// permutes entries of in_slice according to permutation slice and puts them to out_slice
|
||||||
|
#[inline]
|
||||||
|
pub fn apply_permutation<T: Clone>(out_slice: &mut [T], in_slice: &[T], permutation: &[usize]) {
|
||||||
|
assert_eq!(out_slice.len(), in_slice.len());
|
||||||
|
assert_eq!(out_slice.len(), permutation.len());
|
||||||
|
for (out_element, old_pos) in out_slice.iter_mut().zip(permutation) {
|
||||||
|
*out_element = in_slice[*old_pos].clone();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// computes permutation by using provided indices as keys
|
||||||
|
#[inline]
|
||||||
|
pub fn compute_sort_permutation(permutation: &mut [usize], indices: &[usize]) {
|
||||||
|
assert_eq!(permutation.len(), indices.len());
|
||||||
|
// Set permutation to identity
|
||||||
|
for (i, p) in permutation.iter_mut().enumerate() {
|
||||||
|
*p = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute permutation needed to bring minor indices into sorted order
|
||||||
|
// Note: Using sort_unstable here avoids internal allocations, which is crucial since
|
||||||
|
// each lane might have a small number of elements
|
||||||
|
permutation.sort_unstable_by_key(|idx| indices[*idx]);
|
||||||
|
}
|
@ -5,6 +5,8 @@ use nalgebra_sparse::{SparseEntry, SparseEntryMut, SparseFormatErrorKind};
|
|||||||
use proptest::prelude::*;
|
use proptest::prelude::*;
|
||||||
use proptest::sample::subsequence;
|
use proptest::sample::subsequence;
|
||||||
|
|
||||||
|
use super::test_data_examples::{InvalidCsDataExamples, ValidCsDataExamples};
|
||||||
|
|
||||||
use crate::assert_panics;
|
use crate::assert_panics;
|
||||||
use crate::common::csc_strategy;
|
use crate::common::csc_strategy;
|
||||||
|
|
||||||
@ -171,11 +173,26 @@ fn csc_matrix_valid_data() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn csc_matrix_valid_data_unsorted_column_indices() {
|
||||||
|
let valid_data: ValidCsDataExamples = ValidCsDataExamples::new();
|
||||||
|
|
||||||
|
let (offsets, indices, values) = valid_data.valid_unsorted_cs_data;
|
||||||
|
let csc = CscMatrix::try_from_unsorted_csc_data(5, 4, offsets, indices, values).unwrap();
|
||||||
|
|
||||||
|
let (offsets2, indices2, values2) = valid_data.valid_cs_data;
|
||||||
|
let expected_csc = CscMatrix::try_from_csc_data(5, 4, offsets2, indices2, values2).unwrap();
|
||||||
|
|
||||||
|
assert_eq!(csc, expected_csc);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn csc_matrix_try_from_invalid_csc_data() {
|
fn csc_matrix_try_from_invalid_csc_data() {
|
||||||
|
let invalid_data: InvalidCsDataExamples = InvalidCsDataExamples::new();
|
||||||
{
|
{
|
||||||
// Empty offset array (invalid length)
|
// Empty offset array (invalid length)
|
||||||
let matrix = CscMatrix::try_from_csc_data(0, 0, Vec::new(), Vec::new(), Vec::<u32>::new());
|
let (offsets, indices, values) = invalid_data.empty_offset_array;
|
||||||
|
let matrix = CscMatrix::try_from_csc_data(0, 0, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
&SparseFormatErrorKind::InvalidStructure
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
@ -184,10 +201,8 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
|
|
||||||
{
|
{
|
||||||
// Offset array invalid length for arbitrary data
|
// Offset array invalid length for arbitrary data
|
||||||
let offsets = vec![0, 3, 5];
|
let (offsets, indices, values) =
|
||||||
let indices = vec![0, 1, 2, 3, 5];
|
invalid_data.offset_array_invalid_length_for_arbitrary_data;
|
||||||
let values = vec![0, 1, 2, 3, 4];
|
|
||||||
|
|
||||||
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
@ -197,9 +212,7 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
|
|
||||||
{
|
{
|
||||||
// Invalid first entry in offsets array
|
// Invalid first entry in offsets array
|
||||||
let offsets = vec![1, 2, 2, 5];
|
let (offsets, indices, values) = invalid_data.invalid_first_entry_in_offsets_array;
|
||||||
let indices = vec![0, 5, 1, 2, 3];
|
|
||||||
let values = vec![0, 1, 2, 3, 4];
|
|
||||||
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
@ -209,9 +222,7 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
|
|
||||||
{
|
{
|
||||||
// Invalid last entry in offsets array
|
// Invalid last entry in offsets array
|
||||||
let offsets = vec![0, 2, 2, 4];
|
let (offsets, indices, values) = invalid_data.invalid_last_entry_in_offsets_array;
|
||||||
let indices = vec![0, 5, 1, 2, 3];
|
|
||||||
let values = vec![0, 1, 2, 3, 4];
|
|
||||||
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
@ -221,9 +232,7 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
|
|
||||||
{
|
{
|
||||||
// Invalid length of offsets array
|
// Invalid length of offsets array
|
||||||
let offsets = vec![0, 2, 2];
|
let (offsets, indices, values) = invalid_data.invalid_length_of_offsets_array;
|
||||||
let indices = vec![0, 5, 1, 2, 3];
|
|
||||||
let values = vec![0, 1, 2, 3, 4];
|
|
||||||
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
@ -233,9 +242,7 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
|
|
||||||
{
|
{
|
||||||
// Nonmonotonic offsets
|
// Nonmonotonic offsets
|
||||||
let offsets = vec![0, 3, 2, 5];
|
let (offsets, indices, values) = invalid_data.nonmonotonic_offsets;
|
||||||
let indices = vec![0, 1, 2, 3, 4];
|
|
||||||
let values = vec![0, 1, 2, 3, 4];
|
|
||||||
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
@ -257,9 +264,7 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
|
|
||||||
{
|
{
|
||||||
// Minor index out of bounds
|
// Minor index out of bounds
|
||||||
let offsets = vec![0, 2, 2, 5];
|
let (offsets, indices, values) = invalid_data.minor_index_out_of_bounds;
|
||||||
let indices = vec![0, 6, 1, 2, 3];
|
|
||||||
let values = vec![0, 1, 2, 3, 4];
|
|
||||||
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
@ -269,9 +274,7 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
|
|
||||||
{
|
{
|
||||||
// Duplicate entry
|
// Duplicate entry
|
||||||
let offsets = vec![0, 2, 2, 5];
|
let (offsets, indices, values) = invalid_data.duplicate_entry;
|
||||||
let indices = vec![0, 5, 2, 2, 3];
|
|
||||||
let values = vec![0, 1, 2, 3, 4];
|
|
||||||
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
let matrix = CscMatrix::try_from_csc_data(6, 3, offsets, indices, values);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
matrix.unwrap_err().kind(),
|
matrix.unwrap_err().kind(),
|
||||||
@ -280,6 +283,121 @@ fn csc_matrix_try_from_invalid_csc_data() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn csc_matrix_try_from_unsorted_invalid_csc_data() {
|
||||||
|
let invalid_data: InvalidCsDataExamples = InvalidCsDataExamples::new();
|
||||||
|
{
|
||||||
|
// Empty offset array (invalid length)
|
||||||
|
let (offsets, indices, values) = invalid_data.empty_offset_array;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(0, 0, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Offset array invalid length for arbitrary data
|
||||||
|
let (offsets, indices, values) =
|
||||||
|
invalid_data.offset_array_invalid_length_for_arbitrary_data;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Invalid first entry in offsets array
|
||||||
|
let (offsets, indices, values) = invalid_data.invalid_first_entry_in_offsets_array;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Invalid last entry in offsets array
|
||||||
|
let (offsets, indices, values) = invalid_data.invalid_last_entry_in_offsets_array;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Invalid length of offsets array
|
||||||
|
let (offsets, indices, values) = invalid_data.invalid_length_of_offsets_array;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Nonmonotonic offsets
|
||||||
|
let (offsets, indices, values) = invalid_data.nonmonotonic_offsets;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Major offset out of bounds
|
||||||
|
let (offsets, indices, values) = invalid_data.major_offset_out_of_bounds;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::IndexOutOfBounds
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Minor index out of bounds
|
||||||
|
let (offsets, indices, values) = invalid_data.minor_index_out_of_bounds;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::IndexOutOfBounds
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Duplicate entry
|
||||||
|
let (offsets, indices, values) = invalid_data.duplicate_entry;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::DuplicateEntry
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Duplicate entry in unsorted lane
|
||||||
|
let (offsets, indices, values) = invalid_data.duplicate_entry_unsorted;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::DuplicateEntry
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Wrong values length
|
||||||
|
let (offsets, indices, values) = invalid_data.wrong_values_length;
|
||||||
|
let matrix = CscMatrix::try_from_unsorted_csc_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn csc_disassemble_avoids_clone_when_owned() {
|
fn csc_disassemble_avoids_clone_when_owned() {
|
||||||
// Test that disassemble avoids cloning the sparsity pattern when it holds the sole reference
|
// Test that disassemble avoids cloning the sparsity pattern when it holds the sole reference
|
||||||
|
@ -5,7 +5,7 @@ use nalgebra_sparse::{SparseEntry, SparseEntryMut, SparseFormatErrorKind};
|
|||||||
use proptest::prelude::*;
|
use proptest::prelude::*;
|
||||||
use proptest::sample::subsequence;
|
use proptest::sample::subsequence;
|
||||||
|
|
||||||
use super::test_data_examples::InvalidCsrDataExamples;
|
use super::test_data_examples::{InvalidCsDataExamples, ValidCsDataExamples};
|
||||||
|
|
||||||
use crate::assert_panics;
|
use crate::assert_panics;
|
||||||
use crate::common::csr_strategy;
|
use crate::common::csr_strategy;
|
||||||
@ -175,30 +175,20 @@ fn csr_matrix_valid_data() {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn csr_matrix_valid_data_unsorted_column_indices() {
|
fn csr_matrix_valid_data_unsorted_column_indices() {
|
||||||
let csr = CsrMatrix::try_from_unsorted_csr_data(
|
let valid_data: ValidCsDataExamples = ValidCsDataExamples::new();
|
||||||
4,
|
|
||||||
5,
|
|
||||||
vec![0, 3, 5, 8, 11],
|
|
||||||
vec![4, 1, 3, 3, 1, 2, 3, 0, 3, 4, 1],
|
|
||||||
vec![5, 1, 4, 7, 4, 2, 3, 1, 8, 9, 6],
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let expected_csr = CsrMatrix::try_from_csr_data(
|
let (offsets, indices, values) = valid_data.valid_unsorted_cs_data;
|
||||||
4,
|
let csr = CsrMatrix::try_from_unsorted_csr_data(4, 5, offsets, indices, values).unwrap();
|
||||||
5,
|
|
||||||
vec![0, 3, 5, 8, 11],
|
let (offsets2, indices2, values2) = valid_data.valid_cs_data;
|
||||||
vec![1, 3, 4, 1, 3, 0, 2, 3, 1, 3, 4],
|
let expected_csr = CsrMatrix::try_from_csr_data(4, 5, offsets2, indices2, values2).unwrap();
|
||||||
vec![1, 4, 5, 4, 7, 1, 2, 3, 6, 8, 9],
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
assert_eq!(csr, expected_csr);
|
assert_eq!(csr, expected_csr);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn csr_matrix_try_from_invalid_csr_data() {
|
fn csr_matrix_try_from_invalid_csr_data() {
|
||||||
let invalid_data: InvalidCsrDataExamples = InvalidCsrDataExamples::new();
|
let invalid_data: InvalidCsDataExamples = InvalidCsDataExamples::new();
|
||||||
{
|
{
|
||||||
// Empty offset array (invalid length)
|
// Empty offset array (invalid length)
|
||||||
let (offsets, indices, values) = invalid_data.empty_offset_array;
|
let (offsets, indices, values) = invalid_data.empty_offset_array;
|
||||||
@ -293,7 +283,7 @@ fn csr_matrix_try_from_invalid_csr_data() {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn csr_matrix_try_from_unsorted_invalid_csr_data() {
|
fn csr_matrix_try_from_unsorted_invalid_csr_data() {
|
||||||
let invalid_data: InvalidCsrDataExamples = InvalidCsrDataExamples::new();
|
let invalid_data: InvalidCsDataExamples = InvalidCsDataExamples::new();
|
||||||
{
|
{
|
||||||
// Empty offset array (invalid length)
|
// Empty offset array (invalid length)
|
||||||
let (offsets, indices, values) = invalid_data.empty_offset_array;
|
let (offsets, indices, values) = invalid_data.empty_offset_array;
|
||||||
@ -355,6 +345,16 @@ fn csr_matrix_try_from_unsorted_invalid_csr_data() {
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Major offset out of bounds
|
||||||
|
let (offsets, indices, values) = invalid_data.major_offset_out_of_bounds;
|
||||||
|
let matrix = CsrMatrix::try_from_unsorted_csr_data(3, 6, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::IndexOutOfBounds
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
// Minor index out of bounds
|
// Minor index out of bounds
|
||||||
let (offsets, indices, values) = invalid_data.minor_index_out_of_bounds;
|
let (offsets, indices, values) = invalid_data.minor_index_out_of_bounds;
|
||||||
@ -374,6 +374,26 @@ fn csr_matrix_try_from_unsorted_invalid_csr_data() {
|
|||||||
&SparseFormatErrorKind::DuplicateEntry
|
&SparseFormatErrorKind::DuplicateEntry
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Duplicate entry in unsorted lane
|
||||||
|
let (offsets, indices, values) = invalid_data.duplicate_entry_unsorted;
|
||||||
|
let matrix = CsrMatrix::try_from_unsorted_csr_data(3, 6, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::DuplicateEntry
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// Wrong values length
|
||||||
|
let (offsets, indices, values) = invalid_data.wrong_values_length;
|
||||||
|
let matrix = CsrMatrix::try_from_unsorted_csr_data(6, 3, offsets, indices, values);
|
||||||
|
assert_eq!(
|
||||||
|
matrix.unwrap_err().kind(),
|
||||||
|
&SparseFormatErrorKind::InvalidStructure
|
||||||
|
);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
@ -1,5 +1,31 @@
|
|||||||
/// Examples of *invalid* raw CSR data `(offsets, indices, values)`.
|
/// Examples of *valid* raw CS data `(offsets, indices, values)`.
|
||||||
pub struct InvalidCsrDataExamples {
|
pub struct ValidCsDataExamples {
|
||||||
|
pub valid_cs_data: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
|
pub valid_unsorted_cs_data: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ValidCsDataExamples {
|
||||||
|
pub fn new() -> Self {
|
||||||
|
let valid_cs_data = (
|
||||||
|
vec![0, 3, 5, 8, 11],
|
||||||
|
vec![1, 3, 4, 1, 3, 0, 2, 3, 1, 3, 4],
|
||||||
|
vec![1, 4, 5, 4, 7, 1, 2, 3, 6, 8, 9],
|
||||||
|
);
|
||||||
|
let valid_unsorted_cs_data = (
|
||||||
|
vec![0, 3, 5, 8, 11],
|
||||||
|
vec![4, 1, 3, 3, 1, 2, 3, 0, 3, 4, 1],
|
||||||
|
vec![5, 1, 4, 7, 4, 2, 3, 1, 8, 9, 6],
|
||||||
|
);
|
||||||
|
|
||||||
|
return Self {
|
||||||
|
valid_cs_data,
|
||||||
|
valid_unsorted_cs_data,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Examples of *invalid* raw CS data `(offsets, indices, values)`.
|
||||||
|
pub struct InvalidCsDataExamples {
|
||||||
pub empty_offset_array: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub empty_offset_array: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
pub offset_array_invalid_length_for_arbitrary_data: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub offset_array_invalid_length_for_arbitrary_data: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
pub invalid_first_entry_in_offsets_array: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub invalid_first_entry_in_offsets_array: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
@ -7,11 +33,14 @@ pub struct InvalidCsrDataExamples {
|
|||||||
pub invalid_length_of_offsets_array: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub invalid_length_of_offsets_array: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
pub nonmonotonic_offsets: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub nonmonotonic_offsets: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
pub nonmonotonic_minor_indices: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub nonmonotonic_minor_indices: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
|
pub major_offset_out_of_bounds: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
pub minor_index_out_of_bounds: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub minor_index_out_of_bounds: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
pub duplicate_entry: (Vec<usize>, Vec<usize>, Vec<i32>),
|
pub duplicate_entry: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
|
pub duplicate_entry_unsorted: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
|
pub wrong_values_length: (Vec<usize>, Vec<usize>, Vec<i32>),
|
||||||
}
|
}
|
||||||
|
|
||||||
impl InvalidCsrDataExamples {
|
impl InvalidCsDataExamples {
|
||||||
pub fn new() -> Self {
|
pub fn new() -> Self {
|
||||||
let empty_offset_array = (Vec::<usize>::new(), Vec::<usize>::new(), Vec::<i32>::new());
|
let empty_offset_array = (Vec::<usize>::new(), Vec::<usize>::new(), Vec::<i32>::new());
|
||||||
let offset_array_invalid_length_for_arbitrary_data =
|
let offset_array_invalid_length_for_arbitrary_data =
|
||||||
@ -25,9 +54,13 @@ impl InvalidCsrDataExamples {
|
|||||||
let nonmonotonic_offsets = (vec![0, 3, 2, 5], vec![0, 1, 2, 3, 4], vec![0, 1, 2, 3, 4]);
|
let nonmonotonic_offsets = (vec![0, 3, 2, 5], vec![0, 1, 2, 3, 4], vec![0, 1, 2, 3, 4]);
|
||||||
let nonmonotonic_minor_indices =
|
let nonmonotonic_minor_indices =
|
||||||
(vec![0, 2, 2, 5], vec![0, 2, 3, 1, 4], vec![0, 1, 2, 3, 4]);
|
(vec![0, 2, 2, 5], vec![0, 2, 3, 1, 4], vec![0, 1, 2, 3, 4]);
|
||||||
|
let major_offset_out_of_bounds =
|
||||||
|
(vec![0, 7, 2, 5], vec![0, 2, 3, 1, 4], vec![0, 1, 2, 3, 4]);
|
||||||
let minor_index_out_of_bounds =
|
let minor_index_out_of_bounds =
|
||||||
(vec![0, 2, 2, 5], vec![0, 6, 1, 2, 3], vec![0, 1, 2, 3, 4]);
|
(vec![0, 2, 2, 5], vec![0, 6, 1, 2, 3], vec![0, 1, 2, 3, 4]);
|
||||||
let duplicate_entry = (vec![0, 2, 2, 5], vec![0, 5, 2, 2, 3], vec![0, 1, 2, 3, 4]);
|
let duplicate_entry = (vec![0, 1, 2, 5], vec![1, 3, 2, 3, 3], vec![0, 1, 2, 3, 4]);
|
||||||
|
let duplicate_entry_unsorted = (vec![0, 1, 4, 5], vec![1, 3, 2, 3, 3], vec![0, 1, 2, 3, 4]);
|
||||||
|
let wrong_values_length = (vec![0, 1, 2, 5], vec![1, 3, 2, 3, 0], vec![5, 4]);
|
||||||
|
|
||||||
return Self {
|
return Self {
|
||||||
empty_offset_array,
|
empty_offset_array,
|
||||||
@ -37,8 +70,11 @@ impl InvalidCsrDataExamples {
|
|||||||
invalid_length_of_offsets_array,
|
invalid_length_of_offsets_array,
|
||||||
nonmonotonic_minor_indices,
|
nonmonotonic_minor_indices,
|
||||||
nonmonotonic_offsets,
|
nonmonotonic_offsets,
|
||||||
|
major_offset_out_of_bounds,
|
||||||
minor_index_out_of_bounds,
|
minor_index_out_of_bounds,
|
||||||
duplicate_entry,
|
duplicate_entry,
|
||||||
|
duplicate_entry_unsorted,
|
||||||
|
wrong_values_length,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -98,7 +98,7 @@ where
|
|||||||
matrix,
|
matrix,
|
||||||
compute_u,
|
compute_u,
|
||||||
compute_v,
|
compute_v,
|
||||||
T::RealField::default_epsilon(),
|
T::RealField::default_epsilon() * crate::convert(5.0),
|
||||||
0,
|
0,
|
||||||
)
|
)
|
||||||
.unwrap()
|
.unwrap()
|
||||||
@ -888,13 +888,13 @@ fn compute_2x2_uptrig_svd<T: RealField>(
|
|||||||
v_t = Some(csv.clone());
|
v_t = Some(csv.clone());
|
||||||
}
|
}
|
||||||
|
|
||||||
if compute_u {
|
|
||||||
let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1.clone();
|
let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1.clone();
|
||||||
let su = (m22 * csv.s()) / v1.clone();
|
let su = (m22 * csv.s()) / v1.clone();
|
||||||
let (csu, sgn_u) = GivensRotation::new(cu, su);
|
let (csu, sgn_u) = GivensRotation::new(cu, su);
|
||||||
|
|
||||||
v1 *= sgn_u.clone();
|
v1 *= sgn_u.clone();
|
||||||
v2 *= sgn_u;
|
v2 *= sgn_u;
|
||||||
|
|
||||||
|
if compute_u {
|
||||||
u = Some(csu);
|
u = Some(csu);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -460,3 +460,42 @@ fn svd_sorted() {
|
|||||||
epsilon = 1.0e-5
|
epsilon = 1.0e-5
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
// Exercises bug reported in issue #983 of nalgebra (https://github.com/dimforge/nalgebra/issues/983)
|
||||||
|
fn svd_regression_issue_983() {
|
||||||
|
let m = nalgebra::dmatrix![
|
||||||
|
10.74785316637712f64, -5.994983325167452, -6.064492921857296;
|
||||||
|
-4.149751381521569, 20.654504205822462, -4.470436210703133;
|
||||||
|
-22.772715014220207, -1.4554372570788008, 18.108113992170573
|
||||||
|
]
|
||||||
|
.transpose();
|
||||||
|
let svd1 = m.clone().svd(true, true);
|
||||||
|
let svd2 = m.clone().svd(false, true);
|
||||||
|
let svd3 = m.clone().svd(true, false);
|
||||||
|
let svd4 = m.svd(false, false);
|
||||||
|
|
||||||
|
assert_relative_eq!(svd1.singular_values, svd2.singular_values, epsilon = 1e-9);
|
||||||
|
assert_relative_eq!(svd1.singular_values, svd3.singular_values, epsilon = 1e-9);
|
||||||
|
assert_relative_eq!(svd1.singular_values, svd4.singular_values, epsilon = 1e-9);
|
||||||
|
assert_relative_eq!(
|
||||||
|
svd1.singular_values,
|
||||||
|
nalgebra::dvector![3.16188022e+01, 2.23811978e+01, 0.],
|
||||||
|
epsilon = 1e-6
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
// Exercises bug reported in issue #1072 of nalgebra (https://github.com/dimforge/nalgebra/issues/1072)
|
||||||
|
fn svd_regression_issue_1072() {
|
||||||
|
let x = nalgebra::dmatrix![-6.206610118536945f64, -3.67612186839874; -1.2755730783423473, 6.047238193479124];
|
||||||
|
let mut x_svd = x.svd(true, true);
|
||||||
|
x_svd.singular_values = nalgebra::dvector![1.0, 0.0];
|
||||||
|
let y = x_svd.recompose().unwrap();
|
||||||
|
let y_svd = y.svd(true, true);
|
||||||
|
assert_relative_eq!(
|
||||||
|
y_svd.singular_values,
|
||||||
|
nalgebra::dvector![1.0, 0.0],
|
||||||
|
epsilon = 1e-9
|
||||||
|
);
|
||||||
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user