forked from M-Labs/nalgebra
initial, unoptimized algoritm
This commit is contained in:
parent
029bbc9ecc
commit
032002dce9
@ -335,12 +335,27 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
||||
if self.is_empty() {
|
||||
T::zero()
|
||||
} else {
|
||||
let val = self.iter().cloned().fold((T::zero(), T::zero()), |a, b| {
|
||||
(a.0 + b.clone() * b.clone(), a.1 + b)
|
||||
});
|
||||
let denom = T::one() / crate::convert::<_, T>(self.len() as f64);
|
||||
let vd = val.1 * denom.clone();
|
||||
val.0 * denom - vd.clone() * vd
|
||||
// let val = self.iter().cloned().fold((T::zero(), T::zero()), |a, b| {
|
||||
// (a.0 + b.clone() * b.clone(), a.1 + b)
|
||||
// });
|
||||
// let denom = T::one() / crate::convert::<_, T>(self.len() as f64);
|
||||
// let vd = val.1 * denom.clone();
|
||||
// val.0 * denom - vd.clone() * vd
|
||||
// let mean: T = self.iter().map(|&entry| entry).sum::<T>();
|
||||
//
|
||||
// let x: Vec<T> = (0..1000).map(|_| T::zero()).collect();
|
||||
// let s: T = x.iter().cloned().fold(T::zero(), |a, b| a + b);
|
||||
|
||||
// cannot use sum since `T` is not `Sum` by trait bounds
|
||||
let total_sum = self.iter().cloned().fold(T::zero(), |a, b| a + b);
|
||||
let n_elements = crate::convert::<_, T>(self.len() as f64);
|
||||
let mean = total_sum / n_elements.clone();
|
||||
|
||||
let variance = self.iter().cloned().fold(T::zero(), |acc, x| {
|
||||
acc + (x.clone() - mean.clone()) * (x.clone() - mean.clone())
|
||||
}) / n_elements.clone();
|
||||
|
||||
variance
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2,6 +2,6 @@
|
||||
use crate::DVector;
|
||||
#[test]
|
||||
fn test_variance_new() {
|
||||
let v = DVector::repeat(10_000, 100000000.1234);
|
||||
let v = DVector::repeat(10_000, 100000000.0);
|
||||
assert_eq!(v.variance(), 0.0)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user