forked from M-Labs/nalgebra
150 lines
4.5 KiB
Rust
150 lines
4.5 KiB
Rust
|
use alga::general::{
|
||
|
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
|
||
|
AbstractSemigroup, Identity, Multiplicative, RealField, TwoSidedInverse,
|
||
|
};
|
||
|
use alga::linear::{ProjectiveTransformation, Transformation};
|
||
|
|
||
|
use crate::base::allocator::Allocator;
|
||
|
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
|
||
|
use crate::base::{DefaultAllocator, VectorN};
|
||
|
|
||
|
use crate::geometry::{Point, SubTCategoryOf, TCategory, TProjective, Transform};
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* Algebraic structures.
|
||
|
*
|
||
|
*/
|
||
|
impl<N: RealField + simba::scalar::RealField, D: DimNameAdd<U1>, C> Identity<Multiplicative>
|
||
|
for Transform<N, D, C>
|
||
|
where
|
||
|
C: TCategory,
|
||
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||
|
{
|
||
|
#[inline]
|
||
|
fn identity() -> Self {
|
||
|
Self::identity()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: RealField + simba::scalar::RealField, D: DimNameAdd<U1>, C> TwoSidedInverse<Multiplicative>
|
||
|
for Transform<N, D, C>
|
||
|
where
|
||
|
C: SubTCategoryOf<TProjective>,
|
||
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||
|
{
|
||
|
#[inline]
|
||
|
#[must_use = "Did you mean to use two_sided_inverse_mut()?"]
|
||
|
fn two_sided_inverse(&self) -> Self {
|
||
|
self.clone().inverse()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn two_sided_inverse_mut(&mut self) {
|
||
|
self.inverse_mut()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: RealField + simba::scalar::RealField, D: DimNameAdd<U1>, C> AbstractMagma<Multiplicative>
|
||
|
for Transform<N, D, C>
|
||
|
where
|
||
|
C: TCategory,
|
||
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||
|
{
|
||
|
#[inline]
|
||
|
fn operate(&self, rhs: &Self) -> Self {
|
||
|
self * rhs
|
||
|
}
|
||
|
}
|
||
|
|
||
|
macro_rules! impl_multiplicative_structures(
|
||
|
($($marker: ident<$operator: ident>),* $(,)*) => {$(
|
||
|
impl<N: RealField + simba::scalar::RealField, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
|
||
|
where C: TCategory,
|
||
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
|
||
|
)*}
|
||
|
);
|
||
|
|
||
|
macro_rules! impl_inversible_multiplicative_structures(
|
||
|
($($marker: ident<$operator: ident>),* $(,)*) => {$(
|
||
|
impl<N: RealField + simba::scalar::RealField, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
|
||
|
where C: SubTCategoryOf<TProjective>,
|
||
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
|
||
|
)*}
|
||
|
);
|
||
|
|
||
|
impl_multiplicative_structures!(
|
||
|
AbstractSemigroup<Multiplicative>,
|
||
|
AbstractMonoid<Multiplicative>,
|
||
|
);
|
||
|
|
||
|
impl_inversible_multiplicative_structures!(
|
||
|
AbstractQuasigroup<Multiplicative>,
|
||
|
AbstractLoop<Multiplicative>,
|
||
|
AbstractGroup<Multiplicative>
|
||
|
);
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* Transformation groups.
|
||
|
*
|
||
|
*/
|
||
|
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C>
|
||
|
where
|
||
|
N: RealField + simba::scalar::RealField,
|
||
|
C: TCategory,
|
||
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||
|
+ Allocator<N, DimNameSum<D, U1>>
|
||
|
+ Allocator<N, D, D>
|
||
|
+ Allocator<N, D>,
|
||
|
{
|
||
|
#[inline]
|
||
|
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
|
||
|
self.transform_point(pt)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
|
||
|
self.transform_vector(v)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C>
|
||
|
where
|
||
|
N: RealField + simba::scalar::RealField,
|
||
|
C: SubTCategoryOf<TProjective>,
|
||
|
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
|
||
|
+ Allocator<N, DimNameSum<D, U1>>
|
||
|
+ Allocator<N, D, D>
|
||
|
+ Allocator<N, D>,
|
||
|
{
|
||
|
#[inline]
|
||
|
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
|
||
|
self.inverse_transform_point(pt)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
|
||
|
self.inverse_transform_vector(v)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// FIXME: we need to implement an SVD for this.
|
||
|
//
|
||
|
// impl<N, D: DimNameAdd<U1>, C> AffineTransformation<Point<N, D>> for Transform<N, D, C>
|
||
|
// where N: RealField,
|
||
|
// C: SubTCategoryOf<TAffine>,
|
||
|
// DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> +
|
||
|
// Allocator<N, D, D> +
|
||
|
// Allocator<N, D> {
|
||
|
// type PreRotation = Rotation<N, D>;
|
||
|
// type NonUniformScaling = VectorN<N, D>;
|
||
|
// type PostRotation = Rotation<N, D>;
|
||
|
// type Translation = Translation<N, D>;
|
||
|
//
|
||
|
// #[inline]
|
||
|
// fn decompose(&self) -> (Self::Translation, Self::PostRotation, Self::NonUniformScaling, Self::PreRotation) {
|
||
|
// unimplemented!()
|
||
|
// }
|
||
|
// }
|