forked from M-Labs/nalgebra
245 lines
5.2 KiB
Rust
245 lines
5.2 KiB
Rust
|
use core::num::{One, Zero};
|
||
|
use core::vec::{from_elem, swap, all, all2, len};
|
||
|
use core::cmp::ApproxEq;
|
||
|
use traits::inv::Inv;
|
||
|
use traits::transpose::Transpose;
|
||
|
use traits::workarounds::rlmul::{RMul, LMul};
|
||
|
use ndim::dvec::{DVec, zero_vec_with_dim};
|
||
|
|
||
|
#[deriving(Eq, ToStr, Clone)]
|
||
|
pub struct DMat<T>
|
||
|
{
|
||
|
dim: uint, // FIXME: handle more than just square matrices
|
||
|
mij: ~[T]
|
||
|
}
|
||
|
|
||
|
pub fn zero_mat_with_dim<T: Zero + Copy>(dim: uint) -> DMat<T>
|
||
|
{ DMat { dim: dim, mij: from_elem(dim * dim, Zero::zero()) } }
|
||
|
|
||
|
pub fn is_zero_mat<T: Zero>(mat: &DMat<T>) -> bool
|
||
|
{ all(mat.mij, |e| e.is_zero()) }
|
||
|
|
||
|
pub fn one_mat_with_dim<T: Copy + One + Zero>(dim: uint) -> DMat<T>
|
||
|
{
|
||
|
let mut res = zero_mat_with_dim(dim);
|
||
|
let _1 = One::one::<T>();
|
||
|
|
||
|
for uint::range(0u, dim) |i|
|
||
|
{ res.set(i, i, &_1); }
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
impl<T: Copy> DMat<T>
|
||
|
{
|
||
|
pub fn offset(&self, i: uint, j: uint) -> uint
|
||
|
{ i * self.dim + j }
|
||
|
|
||
|
pub fn set(&mut self, i: uint, j: uint, t: &T)
|
||
|
{
|
||
|
assert!(i < self.dim);
|
||
|
assert!(j < self.dim);
|
||
|
self.mij[self.offset(i, j)] = *t
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<T: Copy> Index<(uint, uint), T> for DMat<T>
|
||
|
{
|
||
|
fn index(&self, &(i, j): &(uint, uint)) -> T
|
||
|
{ self.mij[self.offset(i, j)] }
|
||
|
}
|
||
|
|
||
|
impl<T: Copy + Mul<T, T> + Add<T, T> + Zero>
|
||
|
Mul<DMat<T>, DMat<T>> for DMat<T>
|
||
|
{
|
||
|
fn mul(&self, other: &DMat<T>) -> DMat<T>
|
||
|
{
|
||
|
assert!(self.dim == other.dim);
|
||
|
|
||
|
let dim = self.dim;
|
||
|
let mut res = zero_mat_with_dim(dim);
|
||
|
|
||
|
for uint::range(0u, dim) |i|
|
||
|
{
|
||
|
for uint::range(0u, dim) |j|
|
||
|
{
|
||
|
let mut acc: T = Zero::zero();
|
||
|
|
||
|
for uint::range(0u, dim) |k|
|
||
|
{ acc += self[(i, k)] * other[(k, j)]; }
|
||
|
|
||
|
res.set(i, j, &acc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<T: Copy + Add<T, T> + Mul<T, T> + Zero>
|
||
|
RMul<DVec<T>> for DMat<T>
|
||
|
{
|
||
|
fn rmul(&self, other: &DVec<T>) -> DVec<T>
|
||
|
{
|
||
|
assert!(self.dim == len(other.at));
|
||
|
|
||
|
let dim = self.dim;
|
||
|
let mut res : DVec<T> = zero_vec_with_dim(dim);
|
||
|
|
||
|
for uint::range(0u, dim) |i|
|
||
|
{
|
||
|
for uint::range(0u, dim) |j|
|
||
|
{ res.at[i] = res.at[i] + other.at[j] * self[(i, j)]; }
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<T: Copy + Add<T, T> + Mul<T, T> + Zero>
|
||
|
LMul<DVec<T>> for DMat<T>
|
||
|
{
|
||
|
fn lmul(&self, other: &DVec<T>) -> DVec<T>
|
||
|
{
|
||
|
assert!(self.dim == len(other.at));
|
||
|
|
||
|
let dim = self.dim;
|
||
|
let mut res : DVec<T> = zero_vec_with_dim(dim);
|
||
|
|
||
|
for uint::range(0u, dim) |i|
|
||
|
{
|
||
|
for uint::range(0u, dim) |j|
|
||
|
{ res.at[i] = res.at[i] + other.at[j] * self[(j, i)]; }
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<T: Clone + Copy + Eq + One + Zero +
|
||
|
Mul<T, T> + Div<T, T> + Sub<T, T> + Neg<T>>
|
||
|
Inv for DMat<T>
|
||
|
{
|
||
|
fn inverse(&self) -> DMat<T>
|
||
|
{
|
||
|
let mut res : DMat<T> = self.clone();
|
||
|
|
||
|
res.invert();
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
fn invert(&mut self)
|
||
|
{
|
||
|
let dim = self.dim;
|
||
|
let mut res = one_mat_with_dim::<T>(dim);
|
||
|
let _0T = Zero::zero::<T>();
|
||
|
|
||
|
// inversion using Gauss-Jordan elimination
|
||
|
for uint::range(0u, dim) |k|
|
||
|
{
|
||
|
// search a non-zero value on the k-th column
|
||
|
// FIXME: would it be worth it to spend some more time searching for the
|
||
|
// max instead?
|
||
|
|
||
|
// FIXME: this is kind of uggly…
|
||
|
// … but we cannot use position_between since we are iterating on one
|
||
|
// columns
|
||
|
let mut n0 = 0u; // index of a non-zero entry
|
||
|
|
||
|
while (n0 != dim)
|
||
|
{
|
||
|
if (self[(n0, k)] != _0T)
|
||
|
{ break; }
|
||
|
|
||
|
n0 += 1;
|
||
|
}
|
||
|
|
||
|
assert!(n0 != dim); // non inversible matrix
|
||
|
|
||
|
// swap pivot line
|
||
|
if (n0 != k)
|
||
|
{
|
||
|
for uint::range(0u, dim) |j|
|
||
|
{
|
||
|
let off_n0_j = self.offset(n0, j);
|
||
|
let off_k_j = self.offset(k, j);
|
||
|
|
||
|
swap(self.mij, off_n0_j, off_k_j);
|
||
|
swap(res.mij, off_n0_j, off_k_j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let pivot = self[(k, k)];
|
||
|
|
||
|
for uint::range(k, dim) |j|
|
||
|
{
|
||
|
// FIXME: not to putting selfal exression directly on the nuction call
|
||
|
// is uggly but does not seem to compile any more…
|
||
|
let selfval = &(self[(k, j)] / pivot);
|
||
|
let resval = &(res[(k, j)] / pivot);
|
||
|
|
||
|
self.set(k, j, selfval);
|
||
|
res.set(k, j, resval);
|
||
|
}
|
||
|
|
||
|
for uint::range(0u, dim) |l|
|
||
|
{
|
||
|
if (l != k)
|
||
|
{
|
||
|
let normalizer = self[(l, k)] / pivot;
|
||
|
|
||
|
for uint::range(k, dim) |j|
|
||
|
{
|
||
|
let selfval = &(self[(l, j)] - self[(k, j)] * normalizer);
|
||
|
let resval = &(res[(l, j)] - res[(k, j)] * normalizer);
|
||
|
|
||
|
self.set(k, j, selfval);
|
||
|
res.set(k, j, resval);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<T:Copy> Transpose for DMat<T>
|
||
|
{
|
||
|
fn transposed(&self) -> DMat<T>
|
||
|
{
|
||
|
let mut res = copy *self;
|
||
|
|
||
|
res.transpose();
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
fn transpose(&mut self)
|
||
|
{
|
||
|
let dim = self.dim;
|
||
|
|
||
|
for uint::range(1u, dim) |i|
|
||
|
{
|
||
|
for uint::range(0u, dim - 1) |j|
|
||
|
{
|
||
|
let off_i_j = self.offset(i, j);
|
||
|
let off_j_i = self.offset(j, i);
|
||
|
|
||
|
swap(self.mij, off_i_j, off_j_i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<T: ApproxEq<T>> ApproxEq<T> for DMat<T>
|
||
|
{
|
||
|
fn approx_epsilon() -> T
|
||
|
{ ApproxEq::approx_epsilon::<T, T>() }
|
||
|
|
||
|
fn approx_eq(&self, other: &DMat<T>) -> bool
|
||
|
{ all2(self.mij, other.mij, |a, b| a.approx_eq(b)) }
|
||
|
|
||
|
fn approx_eq_eps(&self, other: &DMat<T>, epsilon: &T) -> bool
|
||
|
{ all2(self.mij, other.mij, |a, b| a.approx_eq_eps(b, epsilon)) }
|
||
|
}
|