2017-08-03 01:38:28 +08:00
|
|
|
use num::Zero;
|
|
|
|
use num_complex::Complex;
|
|
|
|
|
|
|
|
use ::ComplexHelper;
|
|
|
|
use na::{Scalar, Matrix, DefaultAllocator, VectorN, MatrixN};
|
|
|
|
use na::dimension::{DimSub, DimDiff, U1};
|
|
|
|
use na::storage::Storage;
|
|
|
|
use na::allocator::Allocator;
|
|
|
|
|
|
|
|
use lapack::fortran as interface;
|
|
|
|
|
|
|
|
|
|
|
|
/// The Hessenberg decomposition of a general matrix.
|
|
|
|
pub struct Hessenberg<N: Scalar, D: DimSub<U1>>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<N, DimDiff<D, U1>> {
|
|
|
|
h: MatrixN<N, D>,
|
|
|
|
tau: VectorN<N, DimDiff<D, U1>>
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
impl<N: HessenbergScalar + Zero, D: DimSub<U1>> Hessenberg<N, D>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<N, DimDiff<D, U1>> {
|
|
|
|
/// Computes the hessenberg decomposition of the matrix `m`.
|
|
|
|
pub fn new(mut m: MatrixN<N, D>) -> Hessenberg<N, D> {
|
|
|
|
let nrows = m.data.shape().0;
|
|
|
|
let n = nrows.value() as i32;
|
|
|
|
|
|
|
|
assert!(m.is_square(), "Unable to compute the hessenberg decomposition of a non-square matrix.");
|
|
|
|
assert!(!m.is_empty(), "Unable to compute the hessenberg decomposition of an empty matrix.");
|
|
|
|
|
|
|
|
let mut tau = unsafe { Matrix::new_uninitialized_generic(nrows.sub(U1), U1) };
|
|
|
|
|
|
|
|
let mut info = 0;
|
|
|
|
let lwork = N::xgehrd_work_size(n, 1, n, m.as_mut_slice(), n, tau.as_mut_slice(), &mut info);
|
|
|
|
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
|
|
|
|
|
|
|
|
lapack_panic!(info);
|
|
|
|
|
|
|
|
N::xgehrd(n, 1, n, m.as_mut_slice(), n, tau.as_mut_slice(), &mut work, lwork, &mut info);
|
|
|
|
lapack_panic!(info);
|
|
|
|
|
|
|
|
Hessenberg { h: m, tau: tau }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the hessenberg matrix of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn h(&self) -> MatrixN<N, D> {
|
|
|
|
let mut h = self.h.clone_owned();
|
|
|
|
h.fill_lower_triangle(N::zero(), 2);
|
|
|
|
|
|
|
|
h
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: HessenbergReal + Zero, D: DimSub<U1>> Hessenberg<N, D>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<N, DimDiff<D, U1>> {
|
|
|
|
/// Computes the matrices `(Q, H)` of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
|
|
|
|
(self.q(), self.h())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the unitary matrix `Q` of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn q(&self) -> MatrixN<N, D> {
|
|
|
|
let n = self.h.nrows() as i32;
|
|
|
|
let mut q = self.h.clone_owned();
|
|
|
|
let mut info = 0;
|
|
|
|
|
|
|
|
let lwork = N::xorghr_work_size(n, 1, n, q.as_mut_slice(), n, self.tau.as_slice(), &mut info);
|
|
|
|
let mut work = vec![ N::zero(); lwork as usize ];
|
|
|
|
|
|
|
|
N::xorghr(n, 1, n, q.as_mut_slice(), n, self.tau.as_slice(), &mut work, lwork, &mut info);
|
|
|
|
|
|
|
|
q
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
*
|
|
|
|
* Lapack functions dispatch.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
pub trait HessenbergScalar: Scalar {
|
|
|
|
fn xgehrd(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32,
|
|
|
|
tau: &mut [Self], work: &mut [Self], lwork: i32, info: &mut i32);
|
|
|
|
fn xgehrd_work_size(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32,
|
|
|
|
tau: &mut [Self], info: &mut i32) -> i32;
|
|
|
|
}
|
|
|
|
|
2017-08-14 01:52:58 +08:00
|
|
|
/// Trait implemented by scalars for which Lapack implements the hessenberg decomposition.
|
2017-08-03 01:38:28 +08:00
|
|
|
pub trait HessenbergReal: HessenbergScalar {
|
2017-08-14 01:52:58 +08:00
|
|
|
#[allow(missing_docs)]
|
2017-08-03 01:38:28 +08:00
|
|
|
fn xorghr(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32, tau: &[Self],
|
|
|
|
work: &mut [Self], lwork: i32, info: &mut i32);
|
2017-08-14 01:52:58 +08:00
|
|
|
#[allow(missing_docs)]
|
2017-08-03 01:38:28 +08:00
|
|
|
fn xorghr_work_size(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32,
|
|
|
|
tau: &[Self], info: &mut i32) -> i32;
|
|
|
|
}
|
|
|
|
|
|
|
|
macro_rules! hessenberg_scalar_impl(
|
|
|
|
($N: ty, $xgehrd: path) => (
|
|
|
|
impl HessenbergScalar for $N {
|
|
|
|
#[inline]
|
|
|
|
fn xgehrd(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32,
|
|
|
|
tau: &mut [Self], work: &mut [Self], lwork: i32, info: &mut i32) {
|
|
|
|
$xgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn xgehrd_work_size(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32,
|
|
|
|
tau: &mut [Self], info: &mut i32) -> i32 {
|
|
|
|
let mut work = [ Zero::zero() ];
|
|
|
|
let lwork = -1 as i32;
|
|
|
|
|
|
|
|
$xgehrd(n, ilo, ihi, a, lda, tau, &mut work, lwork, info);
|
|
|
|
ComplexHelper::real_part(work[0]) as i32
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
macro_rules! hessenberg_real_impl(
|
|
|
|
($N: ty, $xorghr: path) => (
|
|
|
|
impl HessenbergReal for $N {
|
|
|
|
#[inline]
|
|
|
|
fn xorghr(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32, tau: &[Self],
|
|
|
|
work: &mut [Self], lwork: i32, info: &mut i32) {
|
|
|
|
$xorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn xorghr_work_size(n: i32, ilo: i32, ihi: i32, a: &mut [Self], lda: i32,
|
|
|
|
tau: &[Self], info: &mut i32) -> i32 {
|
|
|
|
let mut work = [ Zero::zero() ];
|
|
|
|
let lwork = -1 as i32;
|
|
|
|
|
|
|
|
$xorghr(n, ilo, ihi, a, lda, tau, &mut work, lwork, info);
|
|
|
|
ComplexHelper::real_part(work[0]) as i32
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
hessenberg_scalar_impl!(f32, interface::sgehrd);
|
|
|
|
hessenberg_scalar_impl!(f64, interface::dgehrd);
|
|
|
|
hessenberg_scalar_impl!(Complex<f32>, interface::cgehrd);
|
|
|
|
hessenberg_scalar_impl!(Complex<f64>, interface::zgehrd);
|
|
|
|
|
|
|
|
hessenberg_real_impl!(f32, interface::sorghr);
|
|
|
|
hessenberg_real_impl!(f64, interface::dorghr);
|
|
|
|
|