nalgebra/src/geometry/point_construction.rs

128 lines
3.6 KiB
Rust
Raw Normal View History

#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use rand::{Rand, Rng};
use num::{Zero, One, Bounded};
use alga::general::ClosedDiv;
use core::{Scalar, ColumnVector};
use core::storage::{Storage, OwnedStorage};
use core::allocator::{Allocator, OwnedAllocator};
use core::dimension::{DimName, DimNameAdd, DimNameSum, U1, U2, U3, U4, U5, U6};
use geometry::PointBase;
impl<N, D: DimName, S> PointBase<N, D, S>
where N: Scalar,
S: OwnedStorage<N, D, U1>,
S::Alloc: OwnedAllocator<N, D, U1, S> {
/// Creates a new point with uninitialized coordinates.
#[inline]
pub unsafe fn new_uninitialized() -> Self {
Self::from_coordinates(ColumnVector::<_, D, _>::new_uninitialized())
}
/// Creates a new point with all coordinates equal to zero.
#[inline]
pub fn origin() -> Self
where N: Zero {
Self::from_coordinates(ColumnVector::<_, D, _>::from_element(N::zero()))
}
/// Creates a new point from its homogeneous vector representation.
///
/// In practice, this builds a D-dimensional points with the same first D component as `v`
/// divided by the last component of `v`. Returns `None` if this divisor is zero.
#[inline]
pub fn from_homogeneous<SB>(v: ColumnVector<N, DimNameSum<D, U1>, SB>) -> Option<Self>
where N: Scalar + Zero + One + ClosedDiv,
D: DimNameAdd<U1>,
SB: Storage<N, DimNameSum<D, U1>, U1, Alloc = S::Alloc>,
S::Alloc: Allocator<N, DimNameSum<D, U1>, U1> {
if !v[D::dim()].is_zero() {
let coords = v.fixed_slice::<D, U1>(0, 0) / v[D::dim()];
Some(Self::from_coordinates(coords))
}
else {
None
}
}
}
/*
*
* Traits that buid points.
*
*/
impl<N, D: DimName, S> Bounded for PointBase<N, D, S>
where N: Scalar + Bounded,
S: OwnedStorage<N, D, U1>,
S::Alloc: OwnedAllocator<N, D, U1, S> {
#[inline]
fn max_value() -> Self {
Self::from_coordinates(ColumnVector::max_value())
}
#[inline]
fn min_value() -> Self {
Self::from_coordinates(ColumnVector::min_value())
}
}
impl<N, D: DimName, S> Rand for PointBase<N, D, S>
where N: Scalar + Rand,
S: OwnedStorage<N, D, U1>,
S::Alloc: OwnedAllocator<N, D, U1, S> {
#[inline]
fn rand<G: Rng>(rng: &mut G) -> Self {
PointBase::from_coordinates(rng.gen())
}
}
#[cfg(feature="arbitrary")]
impl<N, D: DimName, S> Arbitrary for PointBase<N, D, S>
where N: Scalar + Arbitrary + Send,
S: OwnedStorage<N, D, U1> + Send,
S::Alloc: OwnedAllocator<N, D, U1, S> {
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
PointBase::from_coordinates(ColumnVector::arbitrary(g))
}
}
/*
*
* Small points construction from components.
*
*/
macro_rules! componentwise_constructors_impl(
($($D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$(
impl<N, S> PointBase<N, $D, S>
where N: Scalar,
S: OwnedStorage<N, $D, U1>,
S::Alloc: OwnedAllocator<N, $D, U1, S> {
/// Initializes this matrix from its components.
#[inline]
pub fn new($($args: N),*) -> PointBase<N, $D, S> {
unsafe {
let mut res = Self::new_uninitialized();
$( *res.get_unchecked_mut($irow) = $args; )*
res
}
}
}
)*}
);
componentwise_constructors_impl!(
U1, x:0;
U2, x:0, y:1;
U3, x:0, y:1, z:2;
U4, x:0, y:1, z:2, w:3;
U5, x:0, y:1, z:2, w:3, a:4;
U6, x:0, y:1, z:2, w:3, a:4, b:5;
);