forked from M-Labs/nalgebra
108 lines
3.3 KiB
Rust
108 lines
3.3 KiB
Rust
|
// Matrix properties checks.
|
|||
|
use num::{Zero, One};
|
|||
|
use approx::ApproxEq;
|
|||
|
|
|||
|
use alga::general::{ClosedAdd, ClosedMul, ClosedSub, Field};
|
|||
|
|
|||
|
use core::{Scalar, Matrix, SquareMatrix};
|
|||
|
use core::dimension::Dim;
|
|||
|
use core::storage::Storage;
|
|||
|
|
|||
|
|
|||
|
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|||
|
/// Indicates if this is a square matrix.
|
|||
|
#[inline]
|
|||
|
pub fn is_square(&self) -> bool {
|
|||
|
let shape = self.shape();
|
|||
|
shape.0 == shape.1
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|||
|
// FIXME: ApproxEq prevents us from using those methods on integer matrices…
|
|||
|
where N: ApproxEq,
|
|||
|
N::Epsilon: Copy {
|
|||
|
/// Indicated if this is the identity matrix within a relative error of `eps`.
|
|||
|
///
|
|||
|
/// If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates `(i, i)`
|
|||
|
/// for i from `0` to `min(R, C)`) are equal one; and that all other elements are zero.
|
|||
|
#[inline]
|
|||
|
pub fn is_identity(&self, eps: N::Epsilon) -> bool
|
|||
|
where N: Zero + One {
|
|||
|
let (nrows, ncols) = self.shape();
|
|||
|
let d;
|
|||
|
|
|||
|
if nrows > ncols {
|
|||
|
d = ncols;
|
|||
|
|
|||
|
for i in d .. nrows {
|
|||
|
for j in 0 .. ncols {
|
|||
|
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else { // nrows <= ncols
|
|||
|
d = nrows;
|
|||
|
|
|||
|
for i in 0 .. nrows {
|
|||
|
for j in d .. ncols {
|
|||
|
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Off-diagonal elements of the sub-square matrix.
|
|||
|
for i in 1 .. d {
|
|||
|
for j in 0 .. i {
|
|||
|
// FIXME: use unsafe indexing.
|
|||
|
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) ||
|
|||
|
!relative_eq!(self[(j, i)], N::zero(), epsilon = eps) {
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Diagonal elements of the sub-square matrix.
|
|||
|
for i in 0 .. d {
|
|||
|
if !relative_eq!(self[(i, i)], N::one(), epsilon = eps) {
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
true
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
impl<N: Scalar + ApproxEq, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
|||
|
where N: Zero + One + ClosedAdd + ClosedMul,
|
|||
|
N::Epsilon: Copy {
|
|||
|
/// Checks that this matrix is orthogonal, i.e., that it is square and `M × Mᵀ = Id`.
|
|||
|
///
|
|||
|
/// In this definition `Id` is approximately equal to the identity matrix with a relative error
|
|||
|
/// equal to `eps`.
|
|||
|
#[inline]
|
|||
|
pub fn is_orthogonal(&self, eps: N::Epsilon) -> bool {
|
|||
|
self.is_square() && (self.tr_mul(self)).is_identity(eps)
|
|||
|
}
|
|||
|
|
|||
|
/// Checks that this matrix is orthogonal and has a determinant equal to 1.
|
|||
|
#[inline]
|
|||
|
pub fn is_special_orthogonal(&self, eps: N::Epsilon) -> bool
|
|||
|
where N: ClosedSub + PartialOrd {
|
|||
|
self.is_orthogonal(eps) && self.determinant() > N::zero()
|
|||
|
}
|
|||
|
|
|||
|
/// Returns `true` if this matrix is invertible.
|
|||
|
#[inline]
|
|||
|
pub fn is_invertible(&self) -> bool
|
|||
|
where N: Field {
|
|||
|
// FIXME: improve this?
|
|||
|
self.clone_owned().try_inverse().is_some()
|
|||
|
}
|
|||
|
}
|