nalgebra/src/geometry/rotation_ops.rs

174 lines
5.9 KiB
Rust
Raw Normal View History

/*
*
* This provides the following operator overladings:
*
* Index<(usize, usize)>
*
* Rotation × Rotation
* Rotation ÷ Rotation
* Rotation × Matrix
* Matrix × Rotation
* Matrix ÷ Rotation
* Rotation × Point
2018-09-25 03:31:54 +08:00
* Rotation × Unit<Vector>
*
*
* Rotation ×= Rotation
* Matrix ×= Rotation
*/
2018-02-02 19:26:35 +08:00
use num::{One, Zero};
2018-10-22 13:00:10 +08:00
use std::ops::{Div, DivAssign, Index, Mul, MulAssign};
2018-02-02 19:26:35 +08:00
use alga::general::{ClosedAdd, ClosedMul};
2018-10-22 13:00:10 +08:00
use base::allocator::Allocator;
use base::constraint::{AreMultipliable, ShapeConstraint};
2018-10-22 13:00:10 +08:00
use base::dimension::{Dim, DimName, U1};
use base::storage::Storage;
2018-10-22 13:00:10 +08:00
use base::{DefaultAllocator, Matrix, MatrixMN, Scalar, Unit, Vector, VectorN};
use geometry::{Point, Rotation};
impl<N: Scalar, D: DimName> Index<(usize, usize)> for Rotation<N, D>
2018-10-22 13:00:10 +08:00
where DefaultAllocator: Allocator<N, D, D>
2018-02-02 19:26:35 +08:00
{
type Output = N;
#[inline]
fn index(&self, row_col: (usize, usize)) -> &N {
self.matrix().index(row_col)
}
}
// Rotation × Rotation
md_impl_all!(
Mul, mul;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>, Output = Rotation<N, D>;
[val val] => Rotation::from_matrix_unchecked(self.into_inner() * right.into_inner());
[ref val] => Rotation::from_matrix_unchecked(self.matrix() * right.into_inner());
[val ref] => Rotation::from_matrix_unchecked(self.into_inner() * right.matrix());
[ref ref] => Rotation::from_matrix_unchecked(self.matrix() * right.matrix());
);
// Rotation ÷ Rotation
2018-09-24 12:48:42 +08:00
// FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
md_impl_all!(
Div, div;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>, Output = Rotation<N, D>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
);
// Rotation × Matrix
md_impl_all!(
Mul, mul;
(D1, D1), (R2, C2) for D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>
where DefaultAllocator: Allocator<N, D1, C2>
where ShapeConstraint: AreMultipliable<D1, D1, R2, C2>;
self: Rotation<N, D1>, right: Matrix<N, R2, C2, SB>, Output = MatrixMN<N, D1, C2>;
[val val] => self.into_inner() * right;
[ref val] => self.matrix() * right;
[val ref] => self.into_inner() * right;
[ref ref] => self.matrix() * right;
);
// Matrix × Rotation
md_impl_all!(
Mul, mul;
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>
where DefaultAllocator: Allocator<N, R1, D2>
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
self: Matrix<N, R1, C1, SA>, right: Rotation<N, D2>, Output = MatrixMN<N, R1, D2>;
[val val] => self * right.into_inner();
[ref val] => self * right.into_inner();
[val ref] => self * right.matrix();
[ref ref] => self * right.matrix();
);
// Matrix ÷ Rotation
md_impl_all!(
Div, div;
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>
where DefaultAllocator: Allocator<N, R1, D2>
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
self: Matrix<N, R1, C1, SA>, right: Rotation<N, D2>, Output = MatrixMN<N, R1, D2>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
);
// Rotation × Point
// FIXME: we don't handle properly non-zero origins here. Do we want this to be the intended
// behavior?
md_impl_all!(
Mul, mul;
(D, D), (D, U1) for D: DimName
where DefaultAllocator: Allocator<N, D>
where ShapeConstraint: AreMultipliable<D, D, D, U1>;
self: Rotation<N, D>, right: Point<N, D>, Output = Point<N, D>;
[val val] => self.into_inner() * right;
[ref val] => self.matrix() * right;
[val ref] => self.into_inner() * right;
[ref ref] => self.matrix() * right;
);
2018-09-25 03:31:54 +08:00
// Rotation × Unit<Vector>
md_impl_all!(
Mul, mul;
(D, D), (D, U1) for D: DimName, S: Storage<N, D>
where DefaultAllocator: Allocator<N, D>
where ShapeConstraint: AreMultipliable<D, D, D, U1>;
self: Rotation<N, D>, right: Unit<Vector<N, D, S>>, Output = Unit<VectorN<N, D>>;
[val val] => Unit::new_unchecked(self.into_inner() * right.into_inner());
[ref val] => Unit::new_unchecked(self.matrix() * right.into_inner());
[val ref] => Unit::new_unchecked(self.into_inner() * right.as_ref());
2018-09-25 03:31:54 +08:00
[ref ref] => Unit::new_unchecked(self.matrix() * right.as_ref());
);
// Rotation ×= Rotation
// FIXME: try not to call `inverse()` explicitly.
md_assign_impl_all!(
MulAssign, mul_assign;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>;
[val] => self.matrix_mut_unchecked().mul_assign(right.into_inner());
2018-11-03 20:35:56 +08:00
[ref] => self.matrix_mut_unchecked().mul_assign(right.matrix());
);
md_assign_impl_all!(
DivAssign, div_assign;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>;
[val] => self.matrix_mut_unchecked().mul_assign(right.inverse().into_inner());
2018-11-03 20:35:56 +08:00
[ref] => self.matrix_mut_unchecked().mul_assign(right.inverse().matrix());
);
// Matrix *= Rotation
// FIXME: try not to call `inverse()` explicitly.
// FIXME: this shares the same limitations as for the current impl. of MulAssign for matrices.
// (In particular the number of matrix column must be equal to the number of rotation columns,
// i.e., equal to the rotation dimension.
md_assign_impl_all!(
MulAssign, mul_assign;
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
self: MatrixMN<N, R1, C1>, right: Rotation<N, C1>;
[val] => self.mul_assign(right.into_inner());
[ref] => self.mul_assign(right.matrix());
);
md_assign_impl_all!(
DivAssign, div_assign;
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
self: MatrixMN<N, R1, C1>, right: Rotation<N, C1>;
[val] => self.mul_assign(right.inverse().into_inner());
[ref] => self.mul_assign(right.inverse().matrix());
);