forked from M-Labs/nalgebra
275 lines
9.5 KiB
Rust
275 lines
9.5 KiB
Rust
|
#![allow(non_snake_case)]
|
|||
|
|
|||
|
#[cfg(feature = "arbitrary")]
|
|||
|
#[macro_use]
|
|||
|
extern crate quickcheck;
|
|||
|
#[macro_use]
|
|||
|
extern crate approx;
|
|||
|
extern crate num_traits as num;
|
|||
|
extern crate alga;
|
|||
|
extern crate nalgebra as na;
|
|||
|
|
|||
|
use alga::linear::{Transformation, ProjectiveTransformation};
|
|||
|
use na::{Vector3, Point3, Similarity3, Translation3, Isometry3, UnitQuaternion};
|
|||
|
|
|||
|
quickcheck!(
|
|||
|
fn inverse_is_identity(i: Similarity3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool {
|
|||
|
let ii = i.inverse();
|
|||
|
|
|||
|
relative_eq!(i * ii, Similarity3::identity(), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!(ii * i, Similarity3::identity(), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
|
|||
|
fn inverse_is_parts_inversion(t: Translation3<f64>, r: UnitQuaternion<f64>, scaling: f64) -> bool {
|
|||
|
if relative_eq!(scaling, 0.0) {
|
|||
|
true
|
|||
|
}
|
|||
|
else {
|
|||
|
let s = Similarity3::from_isometry(t * r, scaling);
|
|||
|
s.inverse() == Similarity3::from_scaling(1.0 / scaling) * r.inverse() * t.inverse()
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn multiply_equals_alga_transform(s: Similarity3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
|||
|
s * v == s.transform_vector(&v) &&
|
|||
|
s * p == s.transform_point(&p) &&
|
|||
|
relative_eq!(s.inverse() * v, s.inverse_transform_vector(&v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!(s.inverse() * p, s.inverse_transform_point(&p), epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
|
|||
|
fn composition(i: Isometry3<f64>, uq: UnitQuaternion<f64>,
|
|||
|
t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>, scaling: f64) -> bool {
|
|||
|
if relative_eq!(scaling, 0.0) {
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
let s = Similarity3::from_scaling(scaling);
|
|||
|
|
|||
|
// (rotation × translation × scaling) × point = rotation × (translation × (scaling × point))
|
|||
|
relative_eq!((uq * t * s) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((uq * t * s) * p, uq * (t * (scaling * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (translation × rotation × scaling) × point = translation × (rotation × (scaling × point))
|
|||
|
relative_eq!((t * uq * s) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((t * uq * s) * p, t * (uq * (scaling * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (rotation × isometry × scaling) × point = rotation × (isometry × (scaling × point))
|
|||
|
relative_eq!((uq * i * s) * v, uq * (i * (scaling * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((uq * i * s) * p, uq * (i * (scaling * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (isometry × rotation × scaling) × point = isometry × (rotation × (scaling × point))
|
|||
|
relative_eq!((i * uq * s) * v, i * (uq * (scaling * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((i * uq * s) * p, i * (uq * (scaling * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (translation × isometry × scaling) × point = translation × (isometry × (scaling × point))
|
|||
|
relative_eq!((t * i * s) * v, (i * (scaling * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((t * i * s) * p, t * (i * (scaling * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (isometry × translation × scaling) × point = isometry × (translation × (scaling × point))
|
|||
|
relative_eq!((i * t * s) * v, i * (scaling * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((i * t * s) * p, i * (t * (scaling * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
* Same as before but with scaling on the middle.
|
|||
|
*/
|
|||
|
// (rotation × scaling × translation) × point = rotation × (scaling × (translation × point))
|
|||
|
relative_eq!((uq * s * t) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((uq * s * t) * p, uq * (scaling * (t * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (translation × scaling × rotation) × point = translation × (scaling × (rotation × point))
|
|||
|
relative_eq!((t * s * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((t * s * uq) * p, t * (scaling * (uq * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (rotation × scaling × isometry) × point = rotation × (scaling × (isometry × point))
|
|||
|
relative_eq!((uq * s * i) * v, uq * (scaling * (i * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((uq * s * i) * p, uq * (scaling * (i * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (isometry × scaling × rotation) × point = isometry × (scaling × (rotation × point))
|
|||
|
relative_eq!((i * s * uq) * v, i * (scaling * (uq * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((i * s * uq) * p, i * (scaling * (uq * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (translation × scaling × isometry) × point = translation × (scaling × (isometry × point))
|
|||
|
relative_eq!((t * s * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((t * s * i) * p, t * (scaling * (i * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (isometry × scaling × translation) × point = isometry × (scaling × (translation × point))
|
|||
|
relative_eq!((i * s * t) * v, i * (scaling * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((i * s * t) * p, i * (scaling * (t * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
* Same as before but with scaling on the left.
|
|||
|
*/
|
|||
|
// (scaling × rotation × translation) × point = scaling × (rotation × (translation × point))
|
|||
|
relative_eq!((s * uq * t) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((s * uq * t) * p, scaling * (uq * (t * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (scaling × translation × rotation) × point = scaling × (translation × (rotation × point))
|
|||
|
relative_eq!((s * t * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((s * t * uq) * p, scaling * (t * (uq * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (scaling × rotation × isometry) × point = scaling × (rotation × (isometry × point))
|
|||
|
relative_eq!((s * uq * i) * v, scaling * (uq * (i * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((s * uq * i) * p, scaling * (uq * (i * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (scaling × isometry × rotation) × point = scaling × (isometry × (rotation × point))
|
|||
|
relative_eq!((s * i * uq) * v, scaling * (i * (uq * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((s * i * uq) * p, scaling * (i * (uq * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (scaling × translation × isometry) × point = scaling × (translation × (isometry × point))
|
|||
|
relative_eq!((s * t * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((s * t * i) * p, scaling * (t * (i * p)), epsilon = 1.0e-7) &&
|
|||
|
|
|||
|
// (scaling × isometry × translation) × point = scaling × (isometry × (translation × point))
|
|||
|
relative_eq!((s * i * t) * v, scaling * (i * v), epsilon = 1.0e-7) &&
|
|||
|
relative_eq!((s * i * t) * p, scaling * (i * (t * p)), epsilon = 1.0e-7)
|
|||
|
}
|
|||
|
|
|||
|
fn all_op_exist(s: Similarity3<f64>, i: Isometry3<f64>, uq: UnitQuaternion<f64>,
|
|||
|
t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
|||
|
let sMs = s * s;
|
|||
|
let sMuq = s * uq;
|
|||
|
let sDs = s / s;
|
|||
|
let sDuq = s / uq;
|
|||
|
|
|||
|
let sMp = s * p;
|
|||
|
let sMv = s * v;
|
|||
|
|
|||
|
let sMt = s * t;
|
|||
|
let tMs = t * s;
|
|||
|
|
|||
|
let uqMs = uq * s;
|
|||
|
let uqDs = uq / s;
|
|||
|
|
|||
|
let sMi = s * i;
|
|||
|
let sDi = s / i;
|
|||
|
|
|||
|
let iMs = i * s;
|
|||
|
let iDs = i / s;
|
|||
|
|
|||
|
let mut sMt1 = s;
|
|||
|
let mut sMt2 = s;
|
|||
|
|
|||
|
let mut sMs1 = s;
|
|||
|
let mut sMs2 = s;
|
|||
|
|
|||
|
let mut sMuq1 = s;
|
|||
|
let mut sMuq2 = s;
|
|||
|
|
|||
|
let mut sMi1 = s;
|
|||
|
let mut sMi2 = s;
|
|||
|
|
|||
|
let mut sDs1 = s;
|
|||
|
let mut sDs2 = s;
|
|||
|
|
|||
|
let mut sDuq1 = s;
|
|||
|
let mut sDuq2 = s;
|
|||
|
|
|||
|
let mut sDi1 = s;
|
|||
|
let mut sDi2 = s;
|
|||
|
|
|||
|
sMt1 *= t;
|
|||
|
sMt2 *= &t;
|
|||
|
|
|||
|
sMs1 *= s;
|
|||
|
sMs2 *= &s;
|
|||
|
|
|||
|
sMuq1 *= uq;
|
|||
|
sMuq2 *= &uq;
|
|||
|
|
|||
|
sMi1 *= i;
|
|||
|
sMi2 *= &i;
|
|||
|
|
|||
|
sDs1 /= s;
|
|||
|
sDs2 /= &s;
|
|||
|
|
|||
|
sDuq1 /= uq;
|
|||
|
sDuq2 /= &uq;
|
|||
|
|
|||
|
sDi1 /= i;
|
|||
|
sDi2 /= &i;
|
|||
|
|
|||
|
sMt == sMt1 &&
|
|||
|
sMt == sMt2 &&
|
|||
|
|
|||
|
sMs == sMs1 &&
|
|||
|
sMs == sMs2 &&
|
|||
|
|
|||
|
sMuq == sMuq1 &&
|
|||
|
sMuq == sMuq2 &&
|
|||
|
|
|||
|
sMi == sMi1 &&
|
|||
|
sMi == sMi2 &&
|
|||
|
|
|||
|
sDs == sDs1 &&
|
|||
|
sDs == sDs2 &&
|
|||
|
|
|||
|
sDuq == sDuq1 &&
|
|||
|
sDuq == sDuq2 &&
|
|||
|
|
|||
|
sDi == sDi1 &&
|
|||
|
sDi == sDi2 &&
|
|||
|
|
|||
|
sMs == &s * &s &&
|
|||
|
sMs == s * &s &&
|
|||
|
sMs == &s * s &&
|
|||
|
|
|||
|
sMuq == &s * &uq &&
|
|||
|
sMuq == s * &uq &&
|
|||
|
sMuq == &s * uq &&
|
|||
|
|
|||
|
sDs == &s / &s &&
|
|||
|
sDs == s / &s &&
|
|||
|
sDs == &s / s &&
|
|||
|
|
|||
|
sDuq == &s / &uq &&
|
|||
|
sDuq == s / &uq &&
|
|||
|
sDuq == &s / uq &&
|
|||
|
|
|||
|
sMp == &s * &p &&
|
|||
|
sMp == s * &p &&
|
|||
|
sMp == &s * p &&
|
|||
|
|
|||
|
sMv == &s * &v &&
|
|||
|
sMv == s * &v &&
|
|||
|
sMv == &s * v &&
|
|||
|
|
|||
|
sMt == &s * &t &&
|
|||
|
sMt == s * &t &&
|
|||
|
sMt == &s * t &&
|
|||
|
|
|||
|
tMs == &t * &s &&
|
|||
|
tMs == t * &s &&
|
|||
|
tMs == &t * s &&
|
|||
|
|
|||
|
uqMs == &uq * &s &&
|
|||
|
uqMs == uq * &s &&
|
|||
|
uqMs == &uq * s &&
|
|||
|
|
|||
|
uqDs == &uq / &s &&
|
|||
|
uqDs == uq / &s &&
|
|||
|
uqDs == &uq / s &&
|
|||
|
|
|||
|
sMi == &s * &i &&
|
|||
|
sMi == s * &i &&
|
|||
|
sMi == &s * i &&
|
|||
|
|
|||
|
sDi == &s / &i &&
|
|||
|
sDi == s / &i &&
|
|||
|
sDi == &s / i &&
|
|||
|
|
|||
|
iMs == &i * &s &&
|
|||
|
iMs == i * &s &&
|
|||
|
iMs == &i * s &&
|
|||
|
|
|||
|
iDs == &i / &s &&
|
|||
|
iDs == i / &s &&
|
|||
|
iDs == &i / s
|
|||
|
}
|
|||
|
);
|