nalgebra/nalgebra-lapack/src/symmetric_eigen.rs

154 lines
5.3 KiB
Rust
Raw Normal View History

use num::Zero;
use std::ops::MulAssign;
use alga::general::Real;
use ::ComplexHelper;
use na::{Scalar, DefaultAllocator, Matrix, VectorN, MatrixN};
use na::dimension::{Dim, U1};
use na::storage::Storage;
use na::allocator::Allocator;
use lapack::fortran as interface;
/// SymmetricEigendecomposition of a real square matrix with real eigenvalues.
pub struct SymmetricEigen<N: Scalar, D: Dim>
where DefaultAllocator: Allocator<N, D> +
Allocator<N, D, D> {
/// The eigenvectors of the decomposed matrix.
pub eigenvectors: MatrixN<N, D>,
/// The unsorted eigenvalues of the decomposed matrix.
pub eigenvalues: VectorN<N, D>,
}
impl<N: SymmetricEigenScalar + Real, D: Dim> SymmetricEigen<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> {
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
///
/// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the
/// eigenvectors are not computed explicitly. Panics if the method did not converge.
pub fn new(m: MatrixN<N, D>) -> Self {
let (vals, vecs) = Self::do_decompose(m, true).expect("SymmetricEigen: convergence failure.");
SymmetricEigen { eigenvalues: vals, eigenvectors: vecs.unwrap() }
}
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
///
/// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the
/// eigenvectors are not computed explicitly. Returns `None` if the method did not converge.
pub fn try_new(m: MatrixN<N, D>) -> Option<Self> {
Self::do_decompose(m, true).map(|(vals, vecs)| {
SymmetricEigen { eigenvalues: vals, eigenvectors: vecs.unwrap() }
})
}
fn do_decompose(mut m: MatrixN<N, D>, eigenvectors: bool) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)> {
assert!(m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix.");
let jobz = if eigenvectors { b'V' } else { b'N' };
let nrows = m.data.shape().0;
let n = nrows.value();
let lda = n as i32;
let mut values = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
let mut info = 0;
let lwork = N::xsyev_work_size(jobz, b'L', n as i32, m.as_mut_slice(), lda, &mut info);
lapack_check!(info);
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
N::xsyev(jobz, b'L', n as i32, m.as_mut_slice(), lda, values.as_mut_slice(), &mut work, lwork, &mut info);
lapack_check!(info);
let vectors = if eigenvectors { Some(m) } else { None };
Some((values, vectors))
}
/// Computes only the eigenvalues of the input matrix.
///
/// Panics if the method does not converge.
pub fn eigenvalues(m: MatrixN<N, D>) -> VectorN<N, D> {
Self::do_decompose(m, false).expect("SymmetricEigen eigenvalues: convergence failure.").0
}
/// Computes only the eigenvalues of the input matrix.
///
/// Returns `None` if the method does not converge.
pub fn try_eigenvalues(m: MatrixN<N, D>) -> Option<VectorN<N, D>> {
Self::do_decompose(m, false).map(|res| res.0)
}
/// The determinant of the decomposed matrix.
#[inline]
pub fn determinant(&self) -> N {
let mut det = N::one();
for e in self.eigenvalues.iter() {
det *= *e;
}
det
}
/// Rebuild the original matrix.
///
/// This is useful if some of the eigenvalues have been manually modified.
pub fn recompose(&self) -> MatrixN<N, D> {
let mut u_t = self.eigenvectors.clone();
for i in 0 .. self.eigenvalues.len() {
let val = self.eigenvalues[i];
u_t.column_mut(i).mul_assign(val);
}
u_t.transpose_mut();
&self.eigenvectors * u_t
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by scalars for which Lapack implements the eigendecomposition of symmetric
/// real matrices.
pub trait SymmetricEigenScalar: Scalar {
#[allow(missing_docs)]
fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self],
lwork: i32, info: &mut i32);
#[allow(missing_docs)]
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32;
}
macro_rules! real_eigensystem_scalar_impl (
($N: ty, $xsyev: path) => (
impl SymmetricEigenScalar for $N {
#[inline]
fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self],
lwork: i32, info: &mut i32) {
$xsyev(jobz, uplo, n, a, lda, w, work, lwork, info)
}
#[inline]
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32 {
let mut work = [ Zero::zero() ];
let mut w = [ Zero::zero() ];
let lwork = -1 as i32;
$xsyev(jobz, uplo, n, a, lda, &mut w, &mut work, lwork, info);
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
real_eigensystem_scalar_impl!(f32, interface::ssyev);
real_eigensystem_scalar_impl!(f64, interface::dsyev);