2017-08-03 01:38:28 +08:00
|
|
|
use num::Zero;
|
|
|
|
use num_complex::Complex;
|
|
|
|
|
2017-08-14 01:52:51 +08:00
|
|
|
use na::{Scalar, DefaultAllocator, Matrix, MatrixN, MatrixMN};
|
2017-08-03 01:38:28 +08:00
|
|
|
use na::dimension::Dim;
|
2017-08-14 01:52:51 +08:00
|
|
|
use na::storage::Storage;
|
2017-08-03 01:38:28 +08:00
|
|
|
use na::allocator::Allocator;
|
|
|
|
|
|
|
|
use lapack::fortran as interface;
|
|
|
|
|
|
|
|
/// The cholesky decomposion of a symmetric-definite-positive matrix.
|
|
|
|
pub struct Cholesky<N: Scalar, D: Dim>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> {
|
|
|
|
l: MatrixN<N, D>
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> {
|
|
|
|
|
|
|
|
/// Complutes the cholesky decomposition of the given symmetric-definite-positive square
|
|
|
|
/// matrix.
|
|
|
|
///
|
|
|
|
/// Only the lower-triangular part of the input matrix is considered.
|
|
|
|
#[inline]
|
|
|
|
pub fn new(mut m: MatrixN<N, D>) -> Option<Self> {
|
|
|
|
// FIXME: check symmetry as well?
|
|
|
|
assert!(m.is_square(), "Unable to compute the cholesky decomposition of a non-square matrix.");
|
|
|
|
|
|
|
|
let uplo = b'L';
|
|
|
|
let dim = m.nrows() as i32;
|
|
|
|
let mut info = 0;
|
|
|
|
|
|
|
|
N::xpotrf(uplo, dim, m.as_mut_slice(), dim, &mut info);
|
|
|
|
lapack_check!(info);
|
|
|
|
|
|
|
|
Some(Cholesky { l: m })
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn unpack(mut self) -> MatrixN<N, D> {
|
|
|
|
self.l.fill_upper_triangle(Zero::zero(), 1);
|
|
|
|
self.l
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn l(&self) -> MatrixN<N, D> {
|
|
|
|
let mut res = self.l.clone();
|
|
|
|
res.fill_upper_triangle(Zero::zero(), 1);
|
|
|
|
res
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Solves the symmetric-definite-positive linear system `self * x = b`, where `x` is the
|
|
|
|
/// unknown to be determined.
|
2017-08-14 01:52:51 +08:00
|
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> Option<MatrixMN<N, R2, C2>>
|
|
|
|
where S2: Storage<N, R2, C2>,
|
|
|
|
DefaultAllocator: Allocator<N, R2, C2> {
|
|
|
|
|
|
|
|
let mut res = b.clone_owned();
|
|
|
|
if self.solve_mut(&mut res) {
|
|
|
|
Some(res)
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is
|
|
|
|
/// the unknown to be determined.
|
|
|
|
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
2017-08-03 01:38:28 +08:00
|
|
|
where DefaultAllocator: Allocator<N, R2, C2> {
|
|
|
|
|
|
|
|
let dim = self.l.nrows();
|
|
|
|
|
|
|
|
assert!(b.nrows() == dim, "The number of rows of `b` must be equal to the dimension of the matrix `a`.");
|
|
|
|
|
|
|
|
let nrhs = b.ncols() as i32;
|
|
|
|
let lda = dim as i32;
|
|
|
|
let ldb = dim as i32;
|
|
|
|
let mut info = 0;
|
|
|
|
|
|
|
|
N::xpotrs(b'L', dim as i32, nrhs, self.l.as_slice(), lda, b.as_mut_slice(), ldb, &mut info);
|
2017-08-14 01:52:51 +08:00
|
|
|
lapack_test!(info)
|
2017-08-03 01:38:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
|
|
pub fn inverse(mut self) -> Option<MatrixN<N, D>> {
|
|
|
|
let dim = self.l.nrows();
|
|
|
|
let mut info = 0;
|
|
|
|
|
|
|
|
N::xpotri(b'L', dim as i32, self.l.as_mut_slice(), dim as i32, &mut info);
|
|
|
|
lapack_check!(info);
|
|
|
|
|
|
|
|
// Copy lower triangle to upper triangle.
|
|
|
|
for i in 0 .. dim {
|
|
|
|
for j in i + 1 .. dim {
|
|
|
|
unsafe { *self.l.get_unchecked_mut(i, j) = *self.l.get_unchecked(j, i) };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Some(self.l)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
*
|
|
|
|
* Lapack functions dispatch.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
|
|
|
|
/// supported by the cholesky decompotition.
|
|
|
|
pub trait CholeskyScalar: Scalar {
|
|
|
|
fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32);
|
|
|
|
fn xpotrs(uplo: u8, n: i32, nrhs: i32, a: &[Self], lda: i32, b: &mut [Self], ldb: i32, info: &mut i32);
|
|
|
|
fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32);
|
|
|
|
}
|
|
|
|
|
|
|
|
macro_rules! cholesky_scalar_impl(
|
|
|
|
($N: ty, $xpotrf: path, $xpotrs: path, $xpotri: path) => (
|
|
|
|
impl CholeskyScalar for $N {
|
|
|
|
#[inline]
|
|
|
|
fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) {
|
|
|
|
$xpotrf(uplo, n, a, lda, info)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn xpotrs(uplo: u8, n: i32, nrhs: i32, a: &[Self], lda: i32,
|
|
|
|
b: &mut [Self], ldb: i32, info: &mut i32) {
|
|
|
|
$xpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) {
|
|
|
|
$xpotri(uplo, n, a, lda, info)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
cholesky_scalar_impl!(f32, interface::spotrf, interface::spotrs, interface::spotri);
|
|
|
|
cholesky_scalar_impl!(f64, interface::dpotrf, interface::dpotrs, interface::dpotri);
|
|
|
|
cholesky_scalar_impl!(Complex<f32>, interface::cpotrf, interface::cpotrs, interface::cpotri);
|
|
|
|
cholesky_scalar_impl!(Complex<f64>, interface::zpotrf, interface::zpotrs, interface::zpotri);
|