forked from M-Labs/nalgebra
113 lines
3.0 KiB
Rust
113 lines
3.0 KiB
Rust
|
use std::cmp;
|
||
|
use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5,
|
||
|
DVector, Vector4, QR};
|
||
|
|
||
|
#[cfg(feature = "arbitrary")]
|
||
|
quickcheck! {
|
||
|
fn qr(m: DMatrix<f64>) -> bool {
|
||
|
let qr = QR::new(m.clone());
|
||
|
let q = qr.q();
|
||
|
let r = qr.r();
|
||
|
|
||
|
relative_eq!(m, &q * r, epsilon = 1.0e-7) &&
|
||
|
q.is_orthogonal(1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn qr_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||
|
let qr = QR::new(m);
|
||
|
let q = qr.q();
|
||
|
let r = qr.r();
|
||
|
|
||
|
relative_eq!(m, q * r, epsilon = 1.0e-7) &&
|
||
|
q.is_orthogonal(1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn qr_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||
|
let qr = QR::new(m);
|
||
|
let q = qr.q();
|
||
|
let r = qr.r();
|
||
|
|
||
|
relative_eq!(m, q * r, epsilon = 1.0e-7) &&
|
||
|
q.is_orthogonal(1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn qr_static_square(m: Matrix4<f64>) -> bool {
|
||
|
let qr = QR::new(m);
|
||
|
let q = qr.q();
|
||
|
let r = qr.r();
|
||
|
|
||
|
println!("{}{}{}{}", q, r, q * r, m);
|
||
|
|
||
|
relative_eq!(m, q * r, epsilon = 1.0e-7) &&
|
||
|
q.is_orthogonal(1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn qr_solve(n: usize, nb: usize) -> bool {
|
||
|
if n != 0 && nb != 0 {
|
||
|
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
|
||
|
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
||
|
let m = DMatrix::<f64>::new_random(n, n);
|
||
|
|
||
|
let qr = QR::new(m.clone());
|
||
|
let b1 = DVector::new_random(n);
|
||
|
let b2 = DMatrix::new_random(n, nb);
|
||
|
|
||
|
if qr.is_invertible() {
|
||
|
let sol1 = qr.solve(&b1).unwrap();
|
||
|
let sol2 = qr.solve(&b2).unwrap();
|
||
|
|
||
|
return relative_eq!(&m * sol1, b1, epsilon = 1.0e-6) &&
|
||
|
relative_eq!(&m * sol2, b2, epsilon = 1.0e-6)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
fn qr_solve_static(m: Matrix4<f64>) -> bool {
|
||
|
let qr = QR::new(m);
|
||
|
let b1 = Vector4::new_random();
|
||
|
let b2 = Matrix4x3::new_random();
|
||
|
|
||
|
if qr.is_invertible() {
|
||
|
let sol1 = qr.solve(&b1).unwrap();
|
||
|
let sol2 = qr.solve(&b2).unwrap();
|
||
|
|
||
|
relative_eq!(m * sol1, b1, epsilon = 1.0e-6) &&
|
||
|
relative_eq!(m * sol2, b2, epsilon = 1.0e-6)
|
||
|
}
|
||
|
else {
|
||
|
false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn qr_inverse(n: usize) -> bool {
|
||
|
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
|
||
|
let m = DMatrix::<f64>::new_random(n, n);
|
||
|
|
||
|
if let Some(m1) = QR::new(m.clone()).try_inverse() {
|
||
|
let id1 = &m * &m1;
|
||
|
let id2 = &m1 * &m;
|
||
|
|
||
|
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
||
|
}
|
||
|
else {
|
||
|
true
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn qr_inverse_static(m: Matrix4<f64>) -> bool {
|
||
|
let qr = QR::new(m);
|
||
|
|
||
|
if let Some(m1) = qr.try_inverse() {
|
||
|
let id1 = &m * &m1;
|
||
|
let id2 = &m1 * &m;
|
||
|
|
||
|
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
||
|
}
|
||
|
else {
|
||
|
true
|
||
|
}
|
||
|
}
|
||
|
}
|