forked from M-Labs/nalgebra
151 lines
3.9 KiB
Rust
151 lines
3.9 KiB
Rust
|
use std::cmp;
|
||
|
use na::{DMatrix, Matrix3, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5,
|
||
|
DVector, Vector4,
|
||
|
LU};
|
||
|
|
||
|
|
||
|
#[test]
|
||
|
fn lu_simple() {
|
||
|
let m = Matrix3::new(
|
||
|
2.0, -1.0, 0.0,
|
||
|
-1.0, 2.0, -1.0,
|
||
|
0.0, -1.0, 2.0);
|
||
|
|
||
|
let lu = LU::new(m);
|
||
|
assert_eq!(lu.determinant(), 4.0);
|
||
|
|
||
|
let (p, l, u) = lu.unpack();
|
||
|
|
||
|
let mut lu = l * u;
|
||
|
p.inv_permute_rows(&mut lu);
|
||
|
|
||
|
assert!(relative_eq!(m, lu, epsilon = 1.0e-7));
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn lu_simple_with_pivot() {
|
||
|
let m = Matrix3::new(
|
||
|
0.0, -1.0, 2.0,
|
||
|
-1.0, 2.0, -1.0,
|
||
|
2.0, -1.0, 0.0);
|
||
|
|
||
|
let lu = LU::new(m);
|
||
|
assert_eq!(lu.determinant(), -4.0);
|
||
|
|
||
|
let (p, l, u) = lu.unpack();
|
||
|
|
||
|
let mut lu = l * u;
|
||
|
p.inv_permute_rows(&mut lu);
|
||
|
|
||
|
assert!(relative_eq!(m, lu, epsilon = 1.0e-7));
|
||
|
}
|
||
|
|
||
|
#[cfg(feature = "arbitrary")]
|
||
|
quickcheck! {
|
||
|
fn lu(m: DMatrix<f64>) -> bool {
|
||
|
let mut m = m;
|
||
|
if m.len() == 0 {
|
||
|
m = DMatrix::new_random(1, 1);
|
||
|
}
|
||
|
|
||
|
let lu = LU::new(m.clone());
|
||
|
let (p, l, u) = lu.unpack();
|
||
|
let mut lu = l * u;
|
||
|
p.inv_permute_rows(&mut lu);
|
||
|
|
||
|
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn lu_static_3_5(m: Matrix3x5<f64>) -> bool {
|
||
|
let lu = LU::new(m);
|
||
|
let (p, l, u) = lu.unpack();
|
||
|
let mut lu = l * u;
|
||
|
p.inv_permute_rows(&mut lu);
|
||
|
|
||
|
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn lu_static_5_3(m: Matrix5x3<f64>) -> bool {
|
||
|
let lu = LU::new(m);
|
||
|
let (p, l, u) = lu.unpack();
|
||
|
let mut lu = l * u;
|
||
|
p.inv_permute_rows(&mut lu);
|
||
|
|
||
|
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn lu_static_square(m: Matrix4<f64>) -> bool {
|
||
|
let lu = LU::new(m);
|
||
|
let (p, l, u) = lu.unpack();
|
||
|
let mut lu = l * u;
|
||
|
p.inv_permute_rows(&mut lu);
|
||
|
|
||
|
relative_eq!(m, lu, epsilon = 1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn lu_solve(n: usize, nb: usize) -> bool {
|
||
|
if n != 0 && nb != 0 {
|
||
|
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
|
||
|
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
||
|
let m = DMatrix::<f64>::new_random(n, n);
|
||
|
|
||
|
let lu = LU::new(m.clone());
|
||
|
let b1 = DVector::new_random(n);
|
||
|
let b2 = DMatrix::new_random(n, nb);
|
||
|
|
||
|
let sol1 = lu.solve(&b1);
|
||
|
let sol2 = lu.solve(&b2);
|
||
|
|
||
|
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||
|
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
fn lu_solve_static(m: Matrix4<f64>) -> bool {
|
||
|
let lu = LU::new(m);
|
||
|
let b1 = Vector4::new_random();
|
||
|
let b2 = Matrix4x3::new_random();
|
||
|
|
||
|
let sol1 = lu.solve(&b1);
|
||
|
let sol2 = lu.solve(&b2);
|
||
|
|
||
|
return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) &&
|
||
|
(sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6))
|
||
|
}
|
||
|
|
||
|
fn lu_inverse(n: usize) -> bool {
|
||
|
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
|
||
|
let m = DMatrix::<f64>::new_random(n, n);
|
||
|
|
||
|
let mut l = m.lower_triangle();
|
||
|
let mut u = m.upper_triangle();
|
||
|
|
||
|
// Ensure the matrix is well conditioned for inversion.
|
||
|
l.fill_diagonal(1.0);
|
||
|
u.fill_diagonal(1.0);
|
||
|
let m = l * u;
|
||
|
|
||
|
let m1 = LU::new(m.clone()).try_inverse().unwrap();
|
||
|
let id1 = &m * &m1;
|
||
|
let id2 = &m1 * &m;
|
||
|
|
||
|
return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5);
|
||
|
}
|
||
|
|
||
|
fn lu_inverse_static(m: Matrix4<f64>) -> bool {
|
||
|
let lu = LU::new(m);
|
||
|
|
||
|
if let Some(m1) = lu.try_inverse() {
|
||
|
let id1 = &m * &m1;
|
||
|
let id2 = &m1 * &m;
|
||
|
|
||
|
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
||
|
}
|
||
|
else {
|
||
|
true
|
||
|
}
|
||
|
}
|
||
|
}
|