forked from M-Labs/nalgebra
231 lines
8.1 KiB
Rust
231 lines
8.1 KiB
Rust
|
use alga::general::Real;
|
||
|
use core::{Unit, Matrix, MatrixN, MatrixMN, VectorN, DefaultAllocator};
|
||
|
use dimension::{Dim, DimMin, DimMinimum, U1};
|
||
|
use storage::{Storage, StorageMut};
|
||
|
use allocator::{Allocator, Reallocator};
|
||
|
use constraint::{ShapeConstraint, SameNumberOfRows};
|
||
|
|
||
|
use linalg::householder;
|
||
|
use geometry::Reflection;
|
||
|
|
||
|
|
||
|
/// The QR decomposition of a general matrix.
|
||
|
pub struct QR<N: Real, R: DimMin<C>, C: Dim>
|
||
|
where DefaultAllocator: Allocator<N, R, C> +
|
||
|
Allocator<N, DimMinimum<R, C>> {
|
||
|
qr: MatrixMN<N, R, C>,
|
||
|
diag: VectorN<N, DimMinimum<R, C>>,
|
||
|
}
|
||
|
|
||
|
impl<N: Real, R: DimMin<C>, C: Dim> QR<N, R, C>
|
||
|
where DefaultAllocator: Allocator<N, R, C> +
|
||
|
Allocator<N, R> +
|
||
|
Allocator<N, DimMinimum<R, C>> {
|
||
|
|
||
|
/// Computes the QR decomposition using householder reflections.
|
||
|
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
|
||
|
let (nrows, ncols) = matrix.data.shape();
|
||
|
let min_nrows_ncols = nrows.min(ncols);
|
||
|
|
||
|
let mut diag = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
|
||
|
|
||
|
if min_nrows_ncols.value() == 0 {
|
||
|
return QR { qr: matrix, diag: diag };
|
||
|
}
|
||
|
|
||
|
for ite in 0 .. min_nrows_ncols.value() {
|
||
|
householder::clear_column_unchecked(&mut matrix, &mut diag[ite], ite, 0, None);
|
||
|
}
|
||
|
|
||
|
QR { qr: matrix, diag: diag }
|
||
|
}
|
||
|
|
||
|
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
||
|
#[inline]
|
||
|
pub fn r(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
||
|
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
|
||
|
// FIXME: the following bound is ugly.
|
||
|
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>> {
|
||
|
let (nrows, ncols) = self.qr.data.shape();
|
||
|
let mut res = self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle();
|
||
|
res.set_diagonal(&self.diag);
|
||
|
res
|
||
|
}
|
||
|
|
||
|
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
||
|
///
|
||
|
/// This is usually faster than `r` but consumes `self`.
|
||
|
#[inline]
|
||
|
pub fn unpack_r(self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
||
|
where DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C>,
|
||
|
// FIXME: the following bound is ugly (needed by `set_diagonal`).
|
||
|
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>> {
|
||
|
let (nrows, ncols) = self.qr.data.shape();
|
||
|
let mut res = self.qr.resize_generic(nrows.min(ncols), ncols, N::zero());
|
||
|
res.fill_lower_triangle(N::zero(), 1);
|
||
|
res.set_diagonal(&self.diag);
|
||
|
res
|
||
|
}
|
||
|
|
||
|
/// Computes the orthogonal matrix `Q` of this decomposition.
|
||
|
pub fn q(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
||
|
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
||
|
let (nrows, ncols) = self.qr.data.shape();
|
||
|
|
||
|
// NOTE: we could build the identity matrix and call q_mul on it.
|
||
|
// Instead we don't so that we take in accout the matrix sparcity.
|
||
|
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
|
||
|
let dim = self.diag.len();
|
||
|
|
||
|
for i in (0 .. dim).rev() {
|
||
|
let axis = self.qr.slice_range(i .., i);
|
||
|
// FIXME: sometimes, the axis might have a zero magnitude.
|
||
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
||
|
|
||
|
let mut res_rows = res.slice_range_mut(i .., i ..);
|
||
|
refl.reflect(&mut res_rows);
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
/// Unpacks this decomposition into its two matrix factors.
|
||
|
pub fn unpack(self) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>)
|
||
|
where DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>>,
|
||
|
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> +
|
||
|
Reallocator<N, R, C, DimMinimum<R, C>, C> {
|
||
|
(self.q(), self.unpack_r())
|
||
|
}
|
||
|
|
||
|
#[doc(hidden)]
|
||
|
pub fn qr_internal(&self) -> &MatrixMN<N, R, C> {
|
||
|
&self.qr
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Multiplies the provided matrix by the transpose of the `Q` matrix of this decomposition.
|
||
|
pub fn q_tr_mul<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||
|
// FIXME: do we need a static constraint on the number of rows of rhs?
|
||
|
where S2: StorageMut<N, R2, C2> {
|
||
|
let dim = self.diag.len();
|
||
|
|
||
|
for i in 0 .. dim {
|
||
|
let axis = self.qr.slice_range(i .., i);
|
||
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
||
|
|
||
|
let mut rhs_rows = rhs.rows_range_mut(i ..);
|
||
|
refl.reflect(&mut rhs_rows);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Real, D: DimMin<D, Output = D>> QR<N, D, D>
|
||
|
where DefaultAllocator: Allocator<N, D, D> +
|
||
|
Allocator<N, D> {
|
||
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||
|
///
|
||
|
/// Returns `None` if `self` is not invertible.
|
||
|
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> Option<MatrixMN<N, R2, C2>>
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||
|
DefaultAllocator: Allocator<N, R2, C2> {
|
||
|
let mut res = b.clone_owned();
|
||
|
|
||
|
if self.solve_mut(&mut res) {
|
||
|
Some(res)
|
||
|
}
|
||
|
else {
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
||
|
///
|
||
|
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` is
|
||
|
/// overwritten with meaningless informations.
|
||
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
|
||
|
assert_eq!(self.qr.nrows(), b.nrows(), "QR solve matrix dimension mismatch.");
|
||
|
assert!(self.qr.is_square(), "QR solve: unable to solve a non-square system.");
|
||
|
|
||
|
self.q_tr_mul(b);
|
||
|
self.solve_upper_triangular_mut(b)
|
||
|
}
|
||
|
|
||
|
// FIXME: duplicate code from the `solve` module.
|
||
|
fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
|
||
|
let dim = self.qr.nrows();
|
||
|
|
||
|
for k in 0 .. b.ncols() {
|
||
|
let mut b = b.column_mut(k);
|
||
|
for i in (0 .. dim).rev() {
|
||
|
let coeff;
|
||
|
|
||
|
unsafe {
|
||
|
let diag = *self.diag.vget_unchecked(i);
|
||
|
|
||
|
if diag.is_zero() {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
coeff = *b.vget_unchecked(i) / diag;
|
||
|
*b.vget_unchecked_mut(i) = coeff;
|
||
|
}
|
||
|
|
||
|
b.rows_range_mut(.. i).axpy(-coeff, &self.qr.slice_range(.. i, i), N::one());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
/// Computes the inverse of the decomposed matrix.
|
||
|
///
|
||
|
/// Returns `None` if the decomposed matrix is not invertible.
|
||
|
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
|
||
|
assert!(self.qr.is_square(), "QR inverse: unable to compute the inverse of a non-square matrix.");
|
||
|
|
||
|
// FIXME: is there a less naive method ?
|
||
|
let (nrows, ncols) = self.qr.data.shape();
|
||
|
let mut res = MatrixN::identity_generic(nrows, ncols);
|
||
|
|
||
|
if self.solve_mut(&mut res) {
|
||
|
Some(res)
|
||
|
}
|
||
|
else {
|
||
|
None
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Indicates if the decomposed matrix is invertible.
|
||
|
pub fn is_invertible(&self) -> bool {
|
||
|
assert!(self.qr.is_square(), "QR: unable to test the invertibility of a non-square matrix.");
|
||
|
|
||
|
for i in 0 .. self.diag.len() {
|
||
|
if self.diag[i].is_zero() {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
|
||
|
// /// Computes the determinant of the decomposed matrix.
|
||
|
// pub fn determinant(&self) -> N {
|
||
|
// let dim = self.qr.nrows();
|
||
|
// assert!(self.qr.is_square(), "QR determinant: unable to compute the determinant of a non-square matrix.");
|
||
|
|
||
|
// let mut res = N::one();
|
||
|
// for i in 0 .. dim {
|
||
|
// res *= unsafe { *self.diag.vget_unchecked(i) };
|
||
|
// }
|
||
|
|
||
|
// res self.q_determinant()
|
||
|
// }
|
||
|
}
|