forked from M-Labs/nalgebra
135 lines
7.4 KiB
Rust
135 lines
7.4 KiB
Rust
|
use std::cmp;
|
||
|
use na::{DMatrix, Matrix2, Matrix3, Matrix4, RealSchur};
|
||
|
|
||
|
|
||
|
#[test]
|
||
|
fn schur_simpl_mat3() {
|
||
|
let m = Matrix3::new(-2.0, -4.0, 2.0,
|
||
|
-2.0, 1.0, 2.0,
|
||
|
4.0, 2.0, 5.0);
|
||
|
|
||
|
let schur = RealSchur::new(m);
|
||
|
let (vecs, vals) = schur.unpack();
|
||
|
|
||
|
assert!(relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7));
|
||
|
}
|
||
|
|
||
|
#[cfg(feature = "arbitrary")]
|
||
|
quickcheck! {
|
||
|
fn schur(n: usize) -> bool {
|
||
|
let n = cmp::max(1, cmp::min(n, 10));
|
||
|
let m = DMatrix::<f64>::new_random(n, n);
|
||
|
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
|
||
|
if !relative_eq!(&vecs * &vals * vecs.transpose(), m, epsilon = 1.0e-7) {
|
||
|
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||
|
}
|
||
|
|
||
|
relative_eq!(&vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7)
|
||
|
}
|
||
|
|
||
|
fn schur_static_mat2(m: Matrix2<f64>) -> bool {
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
|
||
|
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||
|
if !ok {
|
||
|
println!("{:.5}{:.5}", vecs, vals);
|
||
|
println!("Reconstruction:{}{}", m, &vecs * &vals * vecs.transpose());
|
||
|
}
|
||
|
ok
|
||
|
}
|
||
|
|
||
|
fn schur_static_mat3(m: Matrix3<f64>) -> bool {
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
|
||
|
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||
|
if !ok {
|
||
|
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||
|
}
|
||
|
ok
|
||
|
}
|
||
|
|
||
|
fn schur_static_mat4(m: Matrix4<f64>) -> bool {
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
|
||
|
let ok = relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7);
|
||
|
if !ok {
|
||
|
println!("{:.5}{:.5}", m, &vecs * &vals * vecs.transpose());
|
||
|
}
|
||
|
ok
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn schur_static_mat4_fail() {
|
||
|
let m = Matrix4::new(
|
||
|
33.32699857679677, 46.794945978960044, -20.792148817005838, 84.73945485997737,
|
||
|
-53.04896234480401, -4.031523330630989, 19.022858300892366, -93.2258351951158,
|
||
|
-94.61793793643038, -18.64216213611094, 88.32376703241675, -99.30169870309795,
|
||
|
90.62661897246733, 96.74200696130146, 34.7421322611369, 84.86773307198098);
|
||
|
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
println!("{:.6}{:.6}", m, &vecs * &vals * vecs.transpose());
|
||
|
assert!(relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7))
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn schur_static_mat4_fail2() {
|
||
|
let m = Matrix4::new(
|
||
|
14.623586538485966, 7.646156622760756, -52.11923331576265, -97.50030223503413,
|
||
|
53.829398131426785, -33.40560799661168, 70.31168286972388, -81.25248138434173,
|
||
|
27.932377940728202, 82.94220150938, -35.5898884705951, 67.56447552434219,
|
||
|
55.66754906908682, -42.14328890569226, -20.684709585152206, -87.9456949841046);
|
||
|
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
println!("{:.6}{:.6}", m, &vecs * &vals * vecs.transpose());
|
||
|
assert!(relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7))
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn schur_static_mat3_fail() {
|
||
|
let m = Matrix3::new(
|
||
|
-21.58457553143394, -67.3881542667948, -14.619829849784338,
|
||
|
-7.525423104386547, -17.827350599642287, 11.297377444555849,
|
||
|
38.080736654870464, -84.27428302131528, -95.88198590331922);
|
||
|
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
println!("{:.6}{:.6}", m, &vecs * &vals * vecs.transpose());
|
||
|
assert!(relative_eq!(vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7))
|
||
|
}
|
||
|
|
||
|
// Test proposed on the issue #176 of rulinalg.
|
||
|
#[test]
|
||
|
fn schur_singular() {
|
||
|
let m = DMatrix::from_row_slice(24, 24, &[
|
||
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
-1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0,
|
||
|
0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0]);
|
||
|
|
||
|
let (vecs, vals) = RealSchur::new(m.clone()).unpack();
|
||
|
println!("{:.6}{:.6}", m, &vecs * &vals * vecs.transpose());
|
||
|
assert!(relative_eq!(&vecs * vals * vecs.transpose(), m, epsilon = 1.0e-7))
|
||
|
}
|