forked from M-Labs/nalgebra
60 lines
2.8 KiB
Rust
60 lines
2.8 KiB
Rust
|
use na::dimension::{Const, Dynamic};
|
||
|
use na::{DMatrix, EuclideanNorm, Norm, OMatrix};
|
||
|
use nl::GE;
|
||
|
use num_complex::Complex;
|
||
|
use simba::scalar::ComplexField;
|
||
|
use std::cmp;
|
||
|
|
||
|
use crate::proptest::*;
|
||
|
use proptest::{prop_assert, proptest};
|
||
|
|
||
|
proptest! {
|
||
|
#[test]
|
||
|
fn ge(n in PROPTEST_MATRIX_DIM) {
|
||
|
let n = cmp::max(1, cmp::min(n, 10));
|
||
|
let a = DMatrix::<f64>::new_random(n, n);
|
||
|
let b = DMatrix::<f64>::new_random(n, n);
|
||
|
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
||
|
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
||
|
|
||
|
if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0 {
|
||
|
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
|
||
|
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
||
|
|
||
|
let ge = GE::new(a.clone(), b.clone());
|
||
|
let (vsl,vsr) = ge.clone().eigenvectors();
|
||
|
let eigenvalues = ge.clone().eigenvalues();
|
||
|
|
||
|
for i in 0..n {
|
||
|
let left_eigenvector = &vsl.column(i);
|
||
|
prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Dynamic::new(n)) ,epsilon = 1.0e-7));
|
||
|
|
||
|
let right_eigenvector = &vsr.column(i);
|
||
|
prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Dynamic::new(n), Const::<1>) ,epsilon = 1.0e-7));
|
||
|
};
|
||
|
};
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn ge_static(a in matrix4(), b in matrix4()) {
|
||
|
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
||
|
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
||
|
|
||
|
if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0{
|
||
|
let ge = GE::new(a.clone(), b.clone());
|
||
|
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
|
||
|
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
||
|
let (vsl,vsr) = ge.eigenvectors();
|
||
|
let eigenvalues = ge.eigenvalues();
|
||
|
|
||
|
for i in 0..4 {
|
||
|
let left_eigenvector = &vsl.column(i);
|
||
|
prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Const::<4>) ,epsilon = 1.0e-7));
|
||
|
|
||
|
let right_eigenvector = &vsr.column(i);
|
||
|
prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<4>, Const::<1>) ,epsilon = 1.0e-7));
|
||
|
};
|
||
|
};
|
||
|
}
|
||
|
}
|