nalgebra/src/geometry/dual_quaternion_construction.rs

46 lines
1.3 KiB
Rust
Raw Normal View History

use crate::{DualQuaternion, Quaternion, SimdRealField};
impl<N: SimdRealField> DualQuaternion<N> {
/// Creates a dual quaternion from its rotation and translation components.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);
///
/// let dq = DualQuaternion::from_real_and_dual(rot, trans);
2020-12-18 23:09:56 +08:00
/// assert_eq!(dq.real.w, 1.0);
/// ```
#[inline]
pub fn from_real_and_dual(real: Quaternion<N>, dual: Quaternion<N>) -> Self {
2020-12-18 23:09:56 +08:00
Self { real, dual }
}
}
impl<N: SimdRealField> DualQuaternion<N> {
/// The dual quaternion multiplicative identity
///
/// # Example
///
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
///
/// let dq1 = DualQuaternion::identity();
/// let dq2 = DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.,2.,3.,4.),
/// Quaternion::new(5.,6.,7.,8.)
/// );
///
/// assert_eq!(dq1 * dq2, dq2);
/// assert_eq!(dq2 * dq1, dq2);
/// ```
#[inline]
pub fn identity() -> Self {
Self::from_real_and_dual(
Quaternion::from_real(N::one()),
Quaternion::from_real(N::zero()),
)
}
}