forked from M-Labs/nalgebra
69 lines
2.7 KiB
Rust
69 lines
2.7 KiB
Rust
|
use na::{DefaultAllocator, Real, U3, U4, Unit, Rotation3, Point3};
|
|||
|
|
|||
|
use traits::{Dimension, Number, Alloc};
|
|||
|
use aliases::{Mat, Vec};
|
|||
|
|
|||
|
/// The identity matrix.
|
|||
|
pub fn identity<N: Number, D: Dimension>() -> Mat<N, D, D>
|
|||
|
where DefaultAllocator: Alloc<N, D, D> {
|
|||
|
Mat::<N, D, D>::identity()
|
|||
|
}
|
|||
|
|
|||
|
/// Build a look at view matrix based on the right handedness.
|
|||
|
///
|
|||
|
/// # Parameters
|
|||
|
/// * `eye` − Position of the camera
|
|||
|
/// * `center` − Position where the camera is looking at
|
|||
|
/// * `u` − Normalized up vector, how the camera is oriented. Typically `(0, 1, 0)`
|
|||
|
pub fn look_at<N: Real>(eye: &Vec<N, U3>, center: &Vec<N, U3>, up: &Vec<N, U3>) -> Mat<N, U4, U4> {
|
|||
|
look_at_rh(eye, center, up)
|
|||
|
}
|
|||
|
|
|||
|
/// Build a left handed look at view matrix.
|
|||
|
///
|
|||
|
/// # Parameters
|
|||
|
/// * `eye` − Position of the camera
|
|||
|
/// * `center` − Position where the camera is looking at
|
|||
|
/// * `u` − Normalized up vector, how the camera is oriented. Typically `(0, 1, 0)`
|
|||
|
pub fn look_at_lh<N: Real>(eye: &Vec<N, U3>, center: &Vec<N, U3>, up: &Vec<N, U3>) -> Mat<N, U4, U4> {
|
|||
|
Mat::look_at_lh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up)
|
|||
|
}
|
|||
|
|
|||
|
/// Build a right handed look at view matrix.
|
|||
|
///
|
|||
|
/// # Parameters
|
|||
|
/// * `eye` − Position of the camera
|
|||
|
/// * `center` − Position where the camera is looking at
|
|||
|
/// * `u` − Normalized up vector, how the camera is oriented. Typically `(0, 1, 0)`
|
|||
|
pub fn look_at_rh<N: Real>(eye: &Vec<N, U3>, center: &Vec<N, U3>, up: &Vec<N, U3>) -> Mat<N, U4, U4> {
|
|||
|
Mat::look_at_rh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up)
|
|||
|
}
|
|||
|
|
|||
|
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle.
|
|||
|
///
|
|||
|
/// # Parameters
|
|||
|
/// * m − Input matrix multiplied by this rotation matrix.
|
|||
|
/// * angle − Rotation angle expressed in radians.
|
|||
|
/// * axis − Rotation axis, recommended to be normalized.
|
|||
|
pub fn rotate<N: Real>(m: &Mat<N, U4, U4>, angle: N, axis: &Vec<N, U3>) -> Mat<N, U4, U4> {
|
|||
|
m * Rotation3::from_axis_angle(&Unit::new_normalize(*axis), angle).to_homogeneous()
|
|||
|
}
|
|||
|
|
|||
|
/// Builds a scale 4 * 4 matrix created from 3 scalars.
|
|||
|
///
|
|||
|
/// # Parameters
|
|||
|
/// * m − Input matrix multiplied by this scale matrix.
|
|||
|
/// * v − Ratio of scaling for each axis.
|
|||
|
pub fn scale<N: Number>(m: &Mat<N, U4, U4>, v: &Vec<N, U3>) -> Mat<N, U4, U4> {
|
|||
|
m.prepend_nonuniform_scaling(v)
|
|||
|
}
|
|||
|
|
|||
|
/// Builds a translation 4 * 4 matrix created from a vector of 3 components.
|
|||
|
///
|
|||
|
/// # Parameters
|
|||
|
/// * m − Input matrix multiplied by this translation matrix.
|
|||
|
/// * v − Coordinates of a translation vector.
|
|||
|
pub fn translate<N: Number>(m: &Mat<N, U4, U4>, v: &Vec<N, U3>) -> Mat<N, U4, U4> {
|
|||
|
m.prepend_translation(v)
|
|||
|
}
|