2020-09-23 15:34:19 +08:00
|
|
|
//! Sparsity patterns for CSR and CSC matrices.
|
2020-07-17 15:52:09 +08:00
|
|
|
use crate::SparseFormatError;
|
2020-09-22 23:50:47 +08:00
|
|
|
use std::fmt;
|
|
|
|
use std::error::Error;
|
2021-01-19 21:15:19 +08:00
|
|
|
use crate::cs::transpose_cs;
|
2020-07-17 15:52:09 +08:00
|
|
|
|
2020-09-22 16:40:12 +08:00
|
|
|
/// A representation of the sparsity pattern of a CSR or CSC matrix.
|
|
|
|
///
|
2021-01-25 21:57:36 +08:00
|
|
|
/// CSR and CSC matrices store matrices in a very similar fashion. In fact, in a certain sense,
|
|
|
|
/// they are transposed. More precisely, when reinterpreting the three data arrays of a CSR
|
|
|
|
/// matrix as a CSC matrix, we obtain the CSC representation of its transpose.
|
2020-09-22 16:40:12 +08:00
|
|
|
///
|
2021-01-25 21:57:36 +08:00
|
|
|
/// [`SparsityPattern`] is an abstraction built on this observation. Whereas CSR matrices
|
|
|
|
/// store a matrix row-by-row, and a CSC matrix stores a matrix column-by-column, a
|
|
|
|
/// `SparsityPattern` represents only the index data structure of a matrix *lane-by-lane*.
|
|
|
|
/// Here, a *lane* is a generalization of rows and columns. We further define *major lanes*
|
|
|
|
/// and *minor lanes*. The sparsity pattern of a CSR matrix is then obtained by interpreting
|
|
|
|
/// major/minor as row/column. Conversely, we obtain the sparsity pattern of a CSC matrix by
|
|
|
|
/// interpreting major/minor as column/row.
|
2020-09-22 16:40:12 +08:00
|
|
|
///
|
2021-01-25 21:57:36 +08:00
|
|
|
/// This allows us to use a common abstraction to talk about sparsity patterns of CSR and CSC
|
|
|
|
/// matrices. This is convenient, because at the abstract level, the invariants of the formats
|
|
|
|
/// are the same. Hence we may encode the invariants of the index data structure separately from
|
|
|
|
/// the scalar values of the matrix. This is especially useful in applications where the
|
|
|
|
/// sparsity pattern is built ahead of the matrix values, or the same sparsity pattern is re-used
|
|
|
|
/// between different matrices. Finally, we can use `SparsityPattern` to encode adjacency
|
|
|
|
/// information in graphs.
|
|
|
|
///
|
|
|
|
/// # Format
|
|
|
|
///
|
|
|
|
/// The format is exactly the same as for the index data structures of CSR and CSC matrices.
|
|
|
|
/// This means that the sparsity pattern of an `m x n` sparse matrix with `nnz` non-zeros,
|
|
|
|
/// where in this case `m x n` does *not* mean `rows x columns`, but rather `majors x minors`,
|
|
|
|
/// is represented by the following two arrays:
|
|
|
|
///
|
|
|
|
/// - `major_offsets`, an array of integers with length `m + 1`.
|
|
|
|
/// - `minor_indices`, an array of integers with length `nnz`.
|
|
|
|
///
|
|
|
|
/// The invariants and relationship between `major_offsets` and `minor_indices` remain the same
|
|
|
|
/// as for `row_offsets` and `col_indices` in the [CSR](`crate::csr::CsrMatrix`) format
|
|
|
|
/// specification.
|
2020-07-17 15:52:09 +08:00
|
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
|
|
// TODO: Make SparsityPattern parametrized by index type
|
|
|
|
// (need a solid abstraction for index types though)
|
|
|
|
pub struct SparsityPattern {
|
|
|
|
major_offsets: Vec<usize>,
|
|
|
|
minor_indices: Vec<usize>,
|
|
|
|
minor_dim: usize,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl SparsityPattern {
|
|
|
|
/// Create a sparsity pattern of the given dimensions without explicitly stored entries.
|
2021-01-25 23:04:29 +08:00
|
|
|
pub fn zeros(major_dim: usize, minor_dim: usize) -> Self {
|
2020-07-17 15:52:09 +08:00
|
|
|
Self {
|
|
|
|
major_offsets: vec![0; major_dim + 1],
|
|
|
|
minor_indices: vec![],
|
|
|
|
minor_dim,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The offsets for the major dimension.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-17 15:52:09 +08:00
|
|
|
pub fn major_offsets(&self) -> &[usize] {
|
|
|
|
&self.major_offsets
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The indices for the minor dimension.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-17 15:52:09 +08:00
|
|
|
pub fn minor_indices(&self) -> &[usize] {
|
|
|
|
&self.minor_indices
|
|
|
|
}
|
|
|
|
|
2021-01-25 21:57:36 +08:00
|
|
|
/// The number of major lanes in the pattern.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-17 15:52:09 +08:00
|
|
|
pub fn major_dim(&self) -> usize {
|
|
|
|
assert!(self.major_offsets.len() > 0);
|
|
|
|
self.major_offsets.len() - 1
|
|
|
|
}
|
|
|
|
|
2021-01-25 21:57:36 +08:00
|
|
|
/// The number of minor lanes in the pattern.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-17 15:52:09 +08:00
|
|
|
pub fn minor_dim(&self) -> usize {
|
|
|
|
self.minor_dim
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The number of "non-zeros", i.e. explicitly stored entries in the pattern.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-17 15:52:09 +08:00
|
|
|
pub fn nnz(&self) -> usize {
|
|
|
|
self.minor_indices.len()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Get the lane at the given index.
|
2020-09-25 20:48:10 +08:00
|
|
|
///
|
|
|
|
/// Panics
|
|
|
|
/// ------
|
|
|
|
///
|
|
|
|
/// Panics if `major_index` is out of bounds.
|
|
|
|
#[inline]
|
|
|
|
pub fn lane(&self, major_index: usize) -> &[usize] {
|
|
|
|
self.get_lane(major_index).unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Get the lane at the given index, or `None` if out of bounds.
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-09-25 20:48:10 +08:00
|
|
|
pub fn get_lane(&self, major_index: usize) -> Option<&[usize]> {
|
2020-07-17 15:52:09 +08:00
|
|
|
let offset_begin = *self.major_offsets().get(major_index)?;
|
|
|
|
let offset_end = *self.major_offsets().get(major_index + 1)?;
|
|
|
|
Some(&self.minor_indices()[offset_begin..offset_end])
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Try to construct a sparsity pattern from the given dimensions, major offsets
|
|
|
|
/// and minor indices.
|
|
|
|
///
|
|
|
|
/// Returns an error if the data does not conform to the requirements.
|
|
|
|
pub fn try_from_offsets_and_indices(
|
|
|
|
major_dim: usize,
|
|
|
|
minor_dim: usize,
|
|
|
|
major_offsets: Vec<usize>,
|
|
|
|
minor_indices: Vec<usize>,
|
2020-09-22 23:50:47 +08:00
|
|
|
) -> Result<Self, SparsityPatternFormatError> {
|
|
|
|
use SparsityPatternFormatError::*;
|
|
|
|
|
2020-09-22 16:40:12 +08:00
|
|
|
if major_offsets.len() != major_dim + 1 {
|
2020-09-22 23:50:47 +08:00
|
|
|
return Err(InvalidOffsetArrayLength);
|
2020-09-22 16:40:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Check that the first and last offsets conform to the specification
|
|
|
|
{
|
2020-09-22 23:50:47 +08:00
|
|
|
let first_offset_ok = *major_offsets.first().unwrap() == 0;
|
|
|
|
let last_offset_ok = *major_offsets.last().unwrap() == minor_indices.len();
|
|
|
|
if !first_offset_ok || !last_offset_ok {
|
|
|
|
return Err(InvalidOffsetFirstLast);
|
2020-09-22 16:40:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test that each lane has strictly monotonically increasing minor indices, i.e.
|
|
|
|
// minor indices within a lane are sorted, unique. In addition, each minor index
|
|
|
|
// must be in bounds with respect to the minor dimension.
|
|
|
|
{
|
|
|
|
for lane_idx in 0 .. major_dim {
|
|
|
|
let range_start = major_offsets[lane_idx];
|
|
|
|
let range_end = major_offsets[lane_idx + 1];
|
|
|
|
|
|
|
|
// Test that major offsets are monotonically increasing
|
|
|
|
if range_start > range_end {
|
2020-09-22 23:50:47 +08:00
|
|
|
return Err(NonmonotonicOffsets);
|
2020-09-22 16:40:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
let minor_indices = &minor_indices[range_start .. range_end];
|
|
|
|
|
|
|
|
// We test for in-bounds, uniqueness and monotonicity at the same time
|
|
|
|
// to ensure that we only visit each minor index once
|
|
|
|
let mut iter = minor_indices.iter();
|
|
|
|
let mut prev = None;
|
|
|
|
|
|
|
|
while let Some(next) = iter.next().copied() {
|
2020-09-25 20:48:10 +08:00
|
|
|
if next >= minor_dim {
|
2020-09-22 23:50:47 +08:00
|
|
|
return Err(MinorIndexOutOfBounds);
|
2020-09-22 16:40:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if let Some(prev) = prev {
|
|
|
|
if prev > next {
|
2020-09-22 23:50:47 +08:00
|
|
|
return Err(NonmonotonicMinorIndices);
|
2020-09-22 16:40:12 +08:00
|
|
|
} else if prev == next {
|
2020-09-22 23:50:47 +08:00
|
|
|
return Err(DuplicateEntry);
|
2020-09-22 16:40:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
prev = Some(next);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-07-17 15:52:09 +08:00
|
|
|
Ok(Self {
|
|
|
|
major_offsets,
|
|
|
|
minor_indices,
|
|
|
|
minor_dim,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
/// An iterator over the explicitly stored "non-zero" entries (i, j).
|
|
|
|
///
|
|
|
|
/// The iteration happens in a lane-major fashion, meaning that the lane index i
|
2020-09-22 16:40:12 +08:00
|
|
|
/// increases monotonically, and the minor index j increases monotonically within each
|
2020-07-17 15:52:09 +08:00
|
|
|
/// lane i.
|
|
|
|
///
|
|
|
|
/// Examples
|
|
|
|
/// --------
|
|
|
|
///
|
|
|
|
/// ```
|
2020-09-23 15:34:19 +08:00
|
|
|
/// # use nalgebra_sparse::pattern::SparsityPattern;
|
2020-07-17 15:52:09 +08:00
|
|
|
/// let offsets = vec![0, 2, 3, 4];
|
|
|
|
/// let minor_indices = vec![0, 2, 1, 0];
|
|
|
|
/// let pattern = SparsityPattern::try_from_offsets_and_indices(3, 4, offsets, minor_indices)
|
|
|
|
/// .unwrap();
|
|
|
|
///
|
|
|
|
/// let entries: Vec<_> = pattern.entries().collect();
|
|
|
|
/// assert_eq!(entries, vec![(0, 0), (0, 2), (1, 1), (2, 0)]);
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
pub fn entries(&self) -> SparsityPatternIter {
|
|
|
|
SparsityPatternIter::from_pattern(self)
|
|
|
|
}
|
2020-09-24 15:55:09 +08:00
|
|
|
|
|
|
|
/// Returns the raw offset and index data for the sparsity pattern.
|
|
|
|
///
|
|
|
|
/// Examples
|
|
|
|
/// --------
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use nalgebra_sparse::pattern::SparsityPattern;
|
|
|
|
/// let offsets = vec![0, 2, 3, 4];
|
|
|
|
/// let minor_indices = vec![0, 2, 1, 0];
|
|
|
|
/// let pattern = SparsityPattern::try_from_offsets_and_indices(
|
|
|
|
/// 3,
|
|
|
|
/// 4,
|
|
|
|
/// offsets.clone(),
|
|
|
|
/// minor_indices.clone())
|
|
|
|
/// .unwrap();
|
|
|
|
/// let (offsets2, minor_indices2) = pattern.disassemble();
|
|
|
|
/// assert_eq!(offsets2, offsets);
|
|
|
|
/// assert_eq!(minor_indices2, minor_indices);
|
|
|
|
/// ```
|
|
|
|
pub fn disassemble(self) -> (Vec<usize>, Vec<usize>) {
|
|
|
|
(self.major_offsets, self.minor_indices)
|
|
|
|
}
|
2021-01-19 21:15:19 +08:00
|
|
|
|
2021-01-25 21:57:36 +08:00
|
|
|
/// Computes the transpose of the sparsity pattern.
|
|
|
|
///
|
|
|
|
/// This is analogous to matrix transposition, i.e. an entry `(i, j)` becomes `(j, i)` in the
|
|
|
|
/// new pattern.
|
2021-01-19 21:15:19 +08:00
|
|
|
pub fn transpose(&self) -> Self {
|
|
|
|
// By using unit () values, we can use the same routines as for CSR/CSC matrices
|
|
|
|
let values = vec![(); self.nnz()];
|
|
|
|
let (new_offsets, new_indices, _) = transpose_cs(
|
|
|
|
self.major_dim(),
|
|
|
|
self.minor_dim(),
|
|
|
|
self.major_offsets(),
|
|
|
|
self.minor_indices(),
|
|
|
|
&values);
|
|
|
|
// TODO: Skip checks
|
|
|
|
Self::try_from_offsets_and_indices(self.minor_dim(),
|
|
|
|
self.major_dim(),
|
|
|
|
new_offsets,
|
|
|
|
new_indices)
|
|
|
|
.expect("Internal error: Transpose should never fail.")
|
|
|
|
}
|
2020-07-17 15:52:09 +08:00
|
|
|
}
|
|
|
|
|
2020-09-22 23:50:47 +08:00
|
|
|
/// Error type for `SparsityPattern` format errors.
|
|
|
|
#[non_exhaustive]
|
2020-09-25 20:48:10 +08:00
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
2020-09-22 23:50:47 +08:00
|
|
|
pub enum SparsityPatternFormatError {
|
|
|
|
/// Indicates an invalid number of offsets.
|
|
|
|
///
|
|
|
|
/// The number of offsets must be equal to (major_dim + 1).
|
|
|
|
InvalidOffsetArrayLength,
|
|
|
|
/// Indicates that the first or last entry in the offset array did not conform to
|
|
|
|
/// specifications.
|
|
|
|
///
|
|
|
|
/// The first entry must be 0, and the last entry must be exactly one greater than the
|
|
|
|
/// major dimension.
|
|
|
|
InvalidOffsetFirstLast,
|
|
|
|
/// Indicates that the major offsets are not monotonically increasing.
|
|
|
|
NonmonotonicOffsets,
|
|
|
|
/// One or more minor indices are out of bounds.
|
|
|
|
MinorIndexOutOfBounds,
|
|
|
|
/// One or more duplicate entries were detected.
|
|
|
|
///
|
|
|
|
/// Two entries are considered duplicates if they are part of the same major lane and have
|
|
|
|
/// the same minor index.
|
|
|
|
DuplicateEntry,
|
|
|
|
/// Indicates that minor indices are not monotonically increasing within each lane.
|
|
|
|
NonmonotonicMinorIndices,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl From<SparsityPatternFormatError> for SparseFormatError {
|
|
|
|
fn from(err: SparsityPatternFormatError) -> Self {
|
|
|
|
use SparsityPatternFormatError::*;
|
|
|
|
use SparsityPatternFormatError::DuplicateEntry as PatternDuplicateEntry;
|
|
|
|
use crate::SparseFormatErrorKind;
|
|
|
|
use crate::SparseFormatErrorKind::*;
|
|
|
|
match err {
|
|
|
|
InvalidOffsetArrayLength
|
|
|
|
| InvalidOffsetFirstLast
|
|
|
|
| NonmonotonicOffsets
|
|
|
|
| NonmonotonicMinorIndices
|
|
|
|
=> SparseFormatError::from_kind_and_error(InvalidStructure, Box::from(err)),
|
|
|
|
MinorIndexOutOfBounds
|
|
|
|
=> SparseFormatError::from_kind_and_error(IndexOutOfBounds,
|
|
|
|
Box::from(err)),
|
|
|
|
PatternDuplicateEntry
|
|
|
|
=> SparseFormatError::from_kind_and_error(SparseFormatErrorKind::DuplicateEntry,
|
|
|
|
Box::from(err)),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl fmt::Display for SparsityPatternFormatError {
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
|
|
match self {
|
|
|
|
SparsityPatternFormatError::InvalidOffsetArrayLength => {
|
|
|
|
write!(f, "Length of offset array is not equal to (major_dim + 1).")
|
|
|
|
},
|
|
|
|
SparsityPatternFormatError::InvalidOffsetFirstLast => {
|
|
|
|
write!(f, "First or last offset is incompatible with format.")
|
|
|
|
},
|
|
|
|
SparsityPatternFormatError::NonmonotonicOffsets => {
|
|
|
|
write!(f, "Offsets are not monotonically increasing.")
|
|
|
|
},
|
|
|
|
SparsityPatternFormatError::MinorIndexOutOfBounds => {
|
|
|
|
write!(f, "A minor index is out of bounds.")
|
|
|
|
},
|
|
|
|
SparsityPatternFormatError::DuplicateEntry => {
|
|
|
|
write!(f, "Input data contains duplicate entries.")
|
|
|
|
},
|
|
|
|
SparsityPatternFormatError::NonmonotonicMinorIndices => {
|
|
|
|
write!(f, "Minor indices are not monotonically increasing within each lane.")
|
|
|
|
},
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Error for SparsityPatternFormatError {}
|
|
|
|
|
2020-07-21 23:39:06 +08:00
|
|
|
/// Iterator type for iterating over entries in a sparsity pattern.
|
2020-07-17 15:52:09 +08:00
|
|
|
#[derive(Debug, Clone)]
|
|
|
|
pub struct SparsityPatternIter<'a> {
|
|
|
|
// See implementation of Iterator::next for an explanation of how these members are used
|
|
|
|
major_offsets: &'a [usize],
|
|
|
|
minor_indices: &'a [usize],
|
|
|
|
current_lane_idx: usize,
|
|
|
|
remaining_minors_in_lane: &'a [usize],
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a> SparsityPatternIter<'a> {
|
|
|
|
fn from_pattern(pattern: &'a SparsityPattern) -> Self {
|
|
|
|
let first_lane_end = pattern.major_offsets().get(1).unwrap_or(&0);
|
|
|
|
let minors_in_first_lane = &pattern.minor_indices()[0 .. *first_lane_end];
|
|
|
|
Self {
|
|
|
|
major_offsets: pattern.major_offsets(),
|
|
|
|
minor_indices: pattern.minor_indices(),
|
|
|
|
current_lane_idx: 0,
|
|
|
|
remaining_minors_in_lane: minors_in_first_lane
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a> Iterator for SparsityPatternIter<'a> {
|
|
|
|
type Item = (usize, usize);
|
|
|
|
|
2020-07-17 23:59:19 +08:00
|
|
|
#[inline]
|
2020-07-17 15:52:09 +08:00
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
|
|
// We ensure fast iteration across each lane by iteratively "draining" a slice
|
|
|
|
// corresponding to the remaining column indices in the particular lane.
|
|
|
|
// When we reach the end of this slice, we are at the end of a lane,
|
|
|
|
// and we must do some bookkeeping for preparing the iteration of the next lane
|
|
|
|
// (or stop iteration if we're through all lanes).
|
|
|
|
// This way we can avoid doing unnecessary bookkeeping on every iteration,
|
|
|
|
// instead paying a small price whenever we jump to a new lane.
|
|
|
|
if let Some(minor_idx) = self.remaining_minors_in_lane.first() {
|
|
|
|
let item = Some((self.current_lane_idx, *minor_idx));
|
|
|
|
self.remaining_minors_in_lane = &self.remaining_minors_in_lane[1..];
|
|
|
|
item
|
|
|
|
} else {
|
|
|
|
loop {
|
|
|
|
// Keep skipping lanes until we found a non-empty lane or there are no more lanes
|
|
|
|
if self.current_lane_idx + 2 >= self.major_offsets.len() {
|
|
|
|
// We've processed all lanes, so we're at the end of the iterator
|
|
|
|
// (note: keep in mind that offsets.len() == major_dim() + 1, hence we need +2)
|
|
|
|
return None;
|
|
|
|
} else {
|
|
|
|
// Bump lane index and check if the lane is non-empty
|
|
|
|
self.current_lane_idx += 1;
|
|
|
|
let lower = self.major_offsets[self.current_lane_idx];
|
|
|
|
let upper = self.major_offsets[self.current_lane_idx + 1];
|
|
|
|
if upper > lower {
|
|
|
|
self.remaining_minors_in_lane = &self.minor_indices[(lower + 1) .. upper];
|
|
|
|
return Some((self.current_lane_idx, self.minor_indices[lower]))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|