forked from M-Labs/nalgebra
309 lines
9.4 KiB
Rust
309 lines
9.4 KiB
Rust
|
use num_complex::Complex;
|
|||
|
use std::ops::MulAssign;
|
|||
|
|
|||
|
use alga::general::Real;
|
|||
|
use core::{MatrixN, VectorN, DefaultAllocator, Matrix2, Vector2};
|
|||
|
use dimension::{Dim, DimSub, DimDiff, U1, U2};
|
|||
|
use allocator::Allocator;
|
|||
|
|
|||
|
use linalg::givens;
|
|||
|
use linalg::SymmetricTridiagonal;
|
|||
|
use geometry::UnitComplex;
|
|||
|
|
|||
|
|
|||
|
/// The eigendecomposition of a symmetric matrix.
|
|||
|
pub struct SymmetricEigen<N: Real, D: Dim>
|
|||
|
where DefaultAllocator: Allocator<N, D, D> +
|
|||
|
Allocator<N, D> {
|
|||
|
/// The eigenvectors of the decomposed matrix.
|
|||
|
pub eigenvectors: MatrixN<N, D>,
|
|||
|
|
|||
|
/// The unsorted eigenvalues of the decomposed matrix.
|
|||
|
pub eigenvalues: VectorN<N, D>
|
|||
|
}
|
|||
|
|
|||
|
impl<N: Real, D: Dim> SymmetricEigen<N, D>
|
|||
|
where DefaultAllocator: Allocator<N, D, D> +
|
|||
|
Allocator<N, D> {
|
|||
|
/// Computes the eigendecomposition of the given symmetric matrix.
|
|||
|
///
|
|||
|
/// Only the lower-triangular and diagonal parts of `m` are read.
|
|||
|
pub fn new(m: MatrixN<N, D>) -> Self
|
|||
|
where D: DimSub<U1>,
|
|||
|
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
|||
|
|
|||
|
Self::try_new(m, N::default_epsilon(), 0).unwrap()
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the eigendecomposition of the given symmetric matrix with user-specified
|
|||
|
/// convergence parameters.
|
|||
|
///
|
|||
|
/// Only the lower-triangular and diagonal parts of `m` are read.
|
|||
|
///
|
|||
|
/// # Arguments
|
|||
|
///
|
|||
|
/// * `eps` − tolerence used to determine when a value converged to 0.
|
|||
|
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
|||
|
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
|||
|
/// continues indefinitely until convergence.
|
|||
|
pub fn try_new(mut m: MatrixN<N, D>, eps: N, max_niter: usize) -> Option<Self>
|
|||
|
where D: DimSub<U1>,
|
|||
|
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
|||
|
|
|||
|
assert!(m.is_square(), "Unable to compute the eigendecomposition of a non-square matrix.");
|
|||
|
let dim = m.nrows();
|
|||
|
|
|||
|
let m_amax = m.amax();
|
|||
|
|
|||
|
if !m_amax.is_zero() {
|
|||
|
m /= m_amax;
|
|||
|
}
|
|||
|
|
|||
|
let (mut q, mut diag, mut off_diag) = SymmetricTridiagonal::new(m).unpack();
|
|||
|
|
|||
|
if dim == 1 {
|
|||
|
diag *= m_amax;
|
|||
|
|
|||
|
return Some(SymmetricEigen {
|
|||
|
eigenvectors: q,
|
|||
|
eigenvalues: diag
|
|||
|
});
|
|||
|
}
|
|||
|
|
|||
|
let mut niter = 0;
|
|||
|
let (mut start, mut end) = Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps);
|
|||
|
|
|||
|
while end != start {
|
|||
|
let subdim = end - start + 1;
|
|||
|
|
|||
|
if subdim > 2 {
|
|||
|
let m = end - 1;
|
|||
|
let n = end;
|
|||
|
|
|||
|
let mut v = Vector2::new(
|
|||
|
diag[start] - wilkinson_shift(diag[m], diag[n], off_diag[m]),
|
|||
|
off_diag[start]);
|
|||
|
|
|||
|
|
|||
|
for i in start .. n {
|
|||
|
let j = i + 1;
|
|||
|
|
|||
|
if let Some((rot, norm)) = givens::cancel_y(&v) {
|
|||
|
if i > start {
|
|||
|
// Not the first iteration.
|
|||
|
off_diag[i - 1] = norm;
|
|||
|
}
|
|||
|
|
|||
|
let mii = diag[i];
|
|||
|
let mjj = diag[j];
|
|||
|
let mij = off_diag[i];
|
|||
|
|
|||
|
let cc = rot.cos_angle() * rot.cos_angle();
|
|||
|
let ss = rot.sin_angle() * rot.sin_angle();
|
|||
|
let cs = rot.cos_angle() * rot.sin_angle();
|
|||
|
|
|||
|
let b = cs * ::convert(2.0) * mij;
|
|||
|
|
|||
|
diag[i] = (cc * mii + ss * mjj) - b;
|
|||
|
diag[j] = (ss * mii + cc * mjj) + b;
|
|||
|
off_diag[i] = cs * (mii - mjj) + mij * (cc - ss);
|
|||
|
|
|||
|
if i != n - 1 {
|
|||
|
v.x = off_diag[i];
|
|||
|
v.y = -rot.sin_angle() * off_diag[i + 1];
|
|||
|
off_diag[i + 1] *= rot.cos_angle();
|
|||
|
}
|
|||
|
|
|||
|
rot.inverse().rotate_rows(&mut q.fixed_columns_mut::<U2>(i));
|
|||
|
}
|
|||
|
else {
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if off_diag[m].abs() <= eps * (diag[m].abs() + diag[n].abs()) {
|
|||
|
end -= 1;
|
|||
|
}
|
|||
|
}
|
|||
|
else if subdim == 2 {
|
|||
|
let m = Matrix2::new(diag[start], off_diag[start],
|
|||
|
off_diag[start], diag[start + 1]);
|
|||
|
let eigvals = m.eigenvalues().unwrap();
|
|||
|
let basis = Vector2::new(eigvals.x - diag[start + 1], off_diag[start]);
|
|||
|
|
|||
|
diag[start + 0] = eigvals[0];
|
|||
|
diag[start + 1] = eigvals[1];
|
|||
|
|
|||
|
if let Some(basis) = basis.try_normalize(eps) {
|
|||
|
let rot = UnitComplex::new_unchecked(Complex::new(basis.x, basis.y));
|
|||
|
rot.rotate_rows(&mut q.fixed_columns_mut::<U2>(start));
|
|||
|
}
|
|||
|
|
|||
|
end -= 1;
|
|||
|
}
|
|||
|
|
|||
|
// Re-delimit the suproblem in case some decoupling occured.
|
|||
|
let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps);
|
|||
|
|
|||
|
start = sub.0;
|
|||
|
end = sub.1;
|
|||
|
|
|||
|
niter += 1;
|
|||
|
if niter == max_niter {
|
|||
|
return None;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
diag *= m_amax;
|
|||
|
|
|||
|
// Solve the remaining 2x2 subproblem.
|
|||
|
|
|||
|
Some(SymmetricEigen {
|
|||
|
eigenvectors: q,
|
|||
|
eigenvalues: diag
|
|||
|
})
|
|||
|
}
|
|||
|
|
|||
|
fn delimit_subproblem(diag: &VectorN<N, D>,
|
|||
|
off_diag: &mut VectorN<N, DimDiff<D, U1>>,
|
|||
|
end: usize,
|
|||
|
eps: N)
|
|||
|
-> (usize, usize)
|
|||
|
where D: DimSub<U1>,
|
|||
|
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
|||
|
|
|||
|
let mut n = end;
|
|||
|
|
|||
|
while n > 0 {
|
|||
|
let m = n - 1;
|
|||
|
|
|||
|
if off_diag[m].abs() > eps * (diag[n].abs() + diag[m].abs()) {
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
n -= 1;
|
|||
|
}
|
|||
|
|
|||
|
if n == 0 {
|
|||
|
return (0, 0);
|
|||
|
}
|
|||
|
|
|||
|
let mut new_start = n - 1;
|
|||
|
while new_start > 0 {
|
|||
|
let m = new_start - 1;
|
|||
|
|
|||
|
if off_diag[m].is_zero() ||
|
|||
|
off_diag[m].abs() <= eps * (diag[new_start].abs() + diag[m].abs()) {
|
|||
|
off_diag[m] = N::zero();
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
new_start -= 1;
|
|||
|
}
|
|||
|
|
|||
|
(new_start, n)
|
|||
|
}
|
|||
|
|
|||
|
/// Rebuild the original matrix.
|
|||
|
///
|
|||
|
/// This is useful if some of the eigenvalues have been manually modified.
|
|||
|
pub fn recompose(&self) -> MatrixN<N, D> {
|
|||
|
let mut u_t = self.eigenvectors.clone();
|
|||
|
for i in 0 .. self.eigenvalues.len() {
|
|||
|
let val = self.eigenvalues[i];
|
|||
|
u_t.column_mut(i).mul_assign(val);
|
|||
|
}
|
|||
|
u_t.transpose_mut();
|
|||
|
&self.eigenvectors * u_t
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the wilkinson shift, i.e., the 2x2 symmetric matrix eigenvalue to its tailing
|
|||
|
/// component `tnn`.
|
|||
|
///
|
|||
|
/// The inputs are interpreted as the 2x2 matrix:
|
|||
|
/// tmm tmn
|
|||
|
/// tmn tnn
|
|||
|
pub fn wilkinson_shift<N: Real>(tmm: N, tnn: N, tmn: N) -> N {
|
|||
|
let sq_tmn = tmn * tmn;
|
|||
|
if !sq_tmn.is_zero() {
|
|||
|
// We have the guarantee thet the denominator won't be zero.
|
|||
|
let d = (tmm - tnn) * ::convert(0.5);
|
|||
|
tnn - sq_tmn / (d + d.signum() * (d * d + sq_tmn).sqrt())
|
|||
|
}
|
|||
|
else {
|
|||
|
tnn
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#[cfg(test)]
|
|||
|
mod test {
|
|||
|
use core::Matrix2;
|
|||
|
|
|||
|
fn expected_shift(m: Matrix2<f64>) -> f64 {
|
|||
|
let vals = m.eigenvalues().unwrap();
|
|||
|
|
|||
|
if (vals.x - m.m22).abs() < (vals.y - m.m22).abs() {
|
|||
|
vals.x
|
|||
|
} else {
|
|||
|
vals.y
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn wilkinson_shift_random() {
|
|||
|
for _ in 0 .. 1000 {
|
|||
|
let m = Matrix2::new_random();
|
|||
|
let m = m * m.transpose();
|
|||
|
|
|||
|
let expected = expected_shift(m);
|
|||
|
let computed = super::wilkinson_shift(m.m11, m.m22, m.m12);
|
|||
|
println!("{} {}", expected, computed);
|
|||
|
assert!(relative_eq!(expected, computed, epsilon = 1.0e-7));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn wilkinson_shift_zero() {
|
|||
|
let m = Matrix2::new(0.0, 0.0,
|
|||
|
0.0, 0.0);
|
|||
|
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
#[test]
|
|||
|
fn wilkinson_shift_zero_diagonal() {
|
|||
|
let m = Matrix2::new(0.0, 42.0,
|
|||
|
42.0, 0.0);
|
|||
|
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn wilkinson_shift_zero_off_diagonal() {
|
|||
|
let m = Matrix2::new(42.0, 0.0,
|
|||
|
0.0, 64.0);
|
|||
|
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn wilkinson_shift_zero_trace() {
|
|||
|
let m = Matrix2::new(42.0, 20.0,
|
|||
|
20.0, -42.0);
|
|||
|
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn wilkinson_shift_zero_diag_diff_and_zero_off_diagonal() {
|
|||
|
let m = Matrix2::new(42.0, 0.0,
|
|||
|
0.0, 42.0);
|
|||
|
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
|||
|
}
|
|||
|
|
|||
|
#[test]
|
|||
|
fn wilkinson_shift_zero_det() {
|
|||
|
let m = Matrix2::new(2.0, 4.0,
|
|||
|
4.0, 8.0);
|
|||
|
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
|||
|
}
|
|||
|
}
|