2017-08-14 01:53:04 +08:00
|
|
|
#[cfg(feature = "serde-serialize")]
|
|
|
|
use serde;
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
use alga::general::Real;
|
|
|
|
use core::{Matrix, MatrixN, MatrixMN, DefaultAllocator};
|
|
|
|
use dimension::{Dim, DimMin, DimMinimum};
|
|
|
|
use storage::{Storage, StorageMut};
|
|
|
|
use allocator::Allocator;
|
|
|
|
use constraint::{ShapeConstraint, SameNumberOfRows};
|
|
|
|
|
|
|
|
use linalg::lu;
|
|
|
|
use linalg::PermutationSequence;
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-08-14 01:53:04 +08:00
|
|
|
/// LU decomposition with full row and column pivoting.
|
|
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
|
|
#[cfg_attr(feature = "serde-serialize",
|
|
|
|
serde(bound(serialize =
|
|
|
|
"DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, R, C>: serde::Serialize,
|
|
|
|
PermutationSequence<DimMinimum<R, C>>: serde::Serialize")))]
|
|
|
|
#[cfg_attr(feature = "serde-serialize",
|
|
|
|
serde(bound(deserialize =
|
|
|
|
"DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, R, C>: serde::Deserialize<'de>,
|
|
|
|
PermutationSequence<DimMinimum<R, C>>: serde::Deserialize<'de>")))]
|
2017-08-14 01:53:00 +08:00
|
|
|
#[derive(Clone, Debug)]
|
2017-08-03 01:37:44 +08:00
|
|
|
pub struct FullPivLU<N: Real, R: DimMin<C>, C: Dim>
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>> {
|
|
|
|
lu: MatrixMN<N, R, C>,
|
|
|
|
p: PermutationSequence<DimMinimum<R, C>>,
|
|
|
|
q: PermutationSequence<DimMinimum<R, C>>
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-08-14 01:53:00 +08:00
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim> Copy for FullPivLU<N, R, C>
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, R, C>: Copy,
|
|
|
|
PermutationSequence<DimMinimum<R, C>>: Copy { }
|
|
|
|
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim> FullPivLU<N, R, C>
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>> {
|
2017-08-14 01:53:04 +08:00
|
|
|
/// Computes the LU decomposition with full pivoting of `matrix`.
|
2017-08-14 01:52:46 +08:00
|
|
|
///
|
|
|
|
/// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
|
2017-08-03 01:37:44 +08:00
|
|
|
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
|
|
|
|
let (nrows, ncols) = matrix.data.shape();
|
|
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
|
|
|
|
let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
|
|
|
|
let mut q = PermutationSequence::identity_generic(min_nrows_ncols);
|
|
|
|
|
|
|
|
if min_nrows_ncols.value() == 0 {
|
|
|
|
return FullPivLU { lu: matrix, p: p, q: q };
|
|
|
|
}
|
|
|
|
|
|
|
|
for i in 0 .. min_nrows_ncols.value() {
|
|
|
|
let piv = matrix.slice_range(i .., i ..).iamax_full();
|
|
|
|
let row_piv = piv.0 + i;
|
|
|
|
let col_piv = piv.1 + i;
|
|
|
|
let diag = matrix[(row_piv, col_piv)];
|
|
|
|
|
|
|
|
if diag.is_zero() {
|
|
|
|
// The remaining of the matrix is zero.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
matrix.swap_columns(i, col_piv);
|
|
|
|
q.append_permutation(i, col_piv);
|
|
|
|
|
|
|
|
if row_piv != i {
|
|
|
|
p.append_permutation(i, row_piv);
|
|
|
|
matrix.columns_range_mut(.. i).swap_rows(i, row_piv);
|
|
|
|
lu::gauss_step_swap(&mut matrix, diag, i, row_piv);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
lu::gauss_step(&mut matrix, diag, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
FullPivLU { lu: matrix, p: p, q: q }
|
|
|
|
}
|
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub fn lu_internal(&self) -> &MatrixMN<N, R, C> {
|
|
|
|
&self.lu
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
|
|
|
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
|
|
|
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
|
|
|
|
m.fill_upper_triangle(N::zero(), 1);
|
|
|
|
m.fill_diagonal(N::one());
|
|
|
|
m
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The upper triangular matrix of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
|
|
|
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The row permutations of this decomposition.
|
|
|
|
#[inline]
|
|
|
|
pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
|
|
|
|
&self.p
|
|
|
|
}
|
|
|
|
|
2017-08-14 01:53:04 +08:00
|
|
|
/// The column permutations of this decomposition.
|
2017-08-03 01:37:44 +08:00
|
|
|
#[inline]
|
|
|
|
pub fn q(&self) -> &PermutationSequence<DimMinimum<R, C>> {
|
|
|
|
&self.q
|
|
|
|
}
|
|
|
|
|
2017-08-14 01:53:04 +08:00
|
|
|
/// The two matrices of this decomposition and the row and column permutations: `(P, L, U, Q)`.
|
2017-08-03 01:37:44 +08:00
|
|
|
#[inline]
|
|
|
|
pub fn unpack(self) -> (PermutationSequence<DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, R, DimMinimum<R, C>>,
|
|
|
|
MatrixMN<N, DimMinimum<R, C>, C>,
|
|
|
|
PermutationSequence<DimMinimum<R, C>>)
|
|
|
|
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> +
|
|
|
|
Allocator<N, DimMinimum<R, C>, C> {
|
|
|
|
// Use reallocation for either l or u.
|
|
|
|
let l = self.l();
|
|
|
|
let u = self.u();
|
|
|
|
let p = self.p;
|
|
|
|
let q = self.q;
|
|
|
|
|
|
|
|
(p, l, u, q)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: Real, D: DimMin<D, Output = D>> FullPivLU<N, D, D>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
Allocator<(usize, usize), D> {
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
|
|
///
|
|
|
|
/// Retuns `None` if the decomposed matrix is not invertible.
|
|
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> Option<MatrixMN<N, R2, C2>>
|
|
|
|
where S2: StorageMut<N, R2, C2>,
|
|
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
|
|
DefaultAllocator: Allocator<N, R2, C2> {
|
|
|
|
let mut res = b.clone_owned();
|
|
|
|
if self.solve_mut(&mut res) {
|
|
|
|
Some(res)
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
|
|
///
|
2017-08-14 01:53:04 +08:00
|
|
|
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` may
|
|
|
|
/// be overwritten with garbage.
|
2017-08-03 01:37:44 +08:00
|
|
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
|
|
|
where S2: StorageMut<N, R2, C2>,
|
|
|
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
|
|
|
|
|
|
|
assert_eq!(self.lu.nrows(), b.nrows(), "FullPivLU solve matrix dimension mismatch.");
|
|
|
|
assert!(self.lu.is_square(), "FullPivLU solve: unable to solve a non-square system.");
|
|
|
|
|
|
|
|
if self.is_invertible() {
|
|
|
|
self.p.permute_rows(b);
|
2017-08-16 00:24:34 +08:00
|
|
|
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
|
|
|
let _ = self.lu.solve_upper_triangular_mut(b);
|
2017-08-03 01:37:44 +08:00
|
|
|
self.q.inv_permute_rows(b);
|
|
|
|
|
|
|
|
true
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
|
|
///
|
|
|
|
/// Returns `None` if the decomposed matrix is not invertible.
|
|
|
|
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
|
|
|
|
assert!(self.lu.is_square(), "FullPivLU inverse: unable to compute the inverse of a non-square matrix.");
|
|
|
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
|
|
|
|
let mut res = MatrixN::identity_generic(nrows, ncols);
|
|
|
|
if self.solve_mut(&mut res) {
|
|
|
|
Some(res)
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Indicates if the decomposed matrix is invertible.
|
|
|
|
pub fn is_invertible(&self) -> bool {
|
|
|
|
assert!(self.lu.is_square(), "FullPivLU: unable to test the invertibility of a non-square matrix.");
|
|
|
|
|
|
|
|
let dim = self.lu.nrows();
|
|
|
|
!self.lu[(dim - 1, dim - 1)].is_zero()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the determinant of the decomposed matrix.
|
|
|
|
pub fn determinant(&self) -> N {
|
|
|
|
assert!(self.lu.is_square(), "FullPivLU determinant: unable to compute the determinant of a non-square matrix.");
|
|
|
|
|
|
|
|
let dim = self.lu.nrows();
|
|
|
|
let mut res = self.lu[(dim - 1, dim - 1)];
|
|
|
|
if !res.is_zero() {
|
|
|
|
for i in 0 .. dim - 1 {
|
|
|
|
res *= unsafe { *self.lu.get_unchecked(i, i) };
|
|
|
|
}
|
|
|
|
|
|
|
|
res * self.p.determinant() * self.q.determinant()
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
N::zero()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2017-08-14 01:52:46 +08:00
|
|
|
|
|
|
|
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<(usize, usize), DimMinimum<R, C>> {
|
2017-08-14 01:53:04 +08:00
|
|
|
/// Computes the LU decomposition with full pivoting of `matrix`.
|
2017-08-14 01:52:46 +08:00
|
|
|
///
|
|
|
|
/// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
|
|
|
|
pub fn full_piv_lu(self) -> FullPivLU<N, R, C> {
|
|
|
|
FullPivLU::new(self.into_owned())
|
|
|
|
}
|
|
|
|
}
|