forked from M-Labs/nalgebra
73 lines
2.8 KiB
Rust
73 lines
2.8 KiB
Rust
|
use alga::general::Real;
|
||
|
use core::{DefaultAllocator, Scalar, Unit, Matrix, Vector};
|
||
|
use core::constraint::{ShapeConstraint, SameNumberOfRows, DimEq, AreMultipliable};
|
||
|
use core::allocator::Allocator;
|
||
|
use dimension::{Dim, DimName, U1};
|
||
|
use storage::{Storage, StorageMut};
|
||
|
|
||
|
use geometry::Point;
|
||
|
|
||
|
/// A reflection wrt. a plane.
|
||
|
pub struct Reflection<N: Scalar, D: Dim, S: Storage<N, D>> {
|
||
|
axis: Vector<N, D, S>,
|
||
|
bias: N
|
||
|
}
|
||
|
|
||
|
impl<N: Real, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
|
||
|
/// Creates a new reflection wrt the plane orthogonal to the given axis and bias.
|
||
|
///
|
||
|
/// The bias is the position of the plane on the axis. In particular, a bias equal to zero
|
||
|
/// represents a plane that passes through the origin.
|
||
|
pub fn new(axis: Unit<Vector<N, D, S>>, bias: N) -> Reflection<N, D, S> {
|
||
|
Reflection { axis: axis.unwrap(), bias: bias }
|
||
|
}
|
||
|
|
||
|
/// Creates a new reflection wrt. the plane orthogonal to the given axis and that contains the
|
||
|
/// point `pt`.
|
||
|
pub fn new_containing_point(axis: Unit<Vector<N, D, S>>, pt: &Point<N, D>) -> Reflection<N, D, S>
|
||
|
where D: DimName,
|
||
|
DefaultAllocator: Allocator<N, D> {
|
||
|
let bias = pt.coords.dot(axis.as_ref());
|
||
|
Self::new(axis, bias)
|
||
|
}
|
||
|
|
||
|
/// The reflexion axis.
|
||
|
pub fn axis(&self) -> &Vector<N, D, S> {
|
||
|
&self.axis
|
||
|
}
|
||
|
|
||
|
// FIXME: naming convension: reflect_to, reflect_assign ?
|
||
|
/// Applies the reflection to the columns of `rhs`.
|
||
|
pub fn reflect<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
|
||
|
for i in 0 .. rhs.ncols() {
|
||
|
// NOTE: we borrow the column twice here. First it is borrowed immutably for the
|
||
|
// dot product, and then mutably. Somehow, this allows significantly
|
||
|
// better optimizations of the dot product from the compiler.
|
||
|
let m_two: N = ::convert(-2.0f64);
|
||
|
let factor = (rhs.column(i).dot(&self.axis) - self.bias) * m_two;
|
||
|
rhs.column_mut(i).axpy(factor, &self.axis, N::one());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Applies the reflection to the rows of `rhs`.
|
||
|
pub fn reflect_rows<R2: Dim, C2: Dim, S2, S3>(&self,
|
||
|
rhs: &mut Matrix<N, R2, C2, S2>,
|
||
|
work: &mut Vector<N, R2, S3>)
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
S3: StorageMut<N, R2>,
|
||
|
ShapeConstraint: DimEq<C2, D> + AreMultipliable<R2, C2, D, U1> {
|
||
|
|
||
|
rhs.mul_to(&self.axis, work);
|
||
|
|
||
|
if !self.bias.is_zero() {
|
||
|
work.add_scalar_mut(-self.bias);
|
||
|
}
|
||
|
|
||
|
let m_two: N = ::convert(-2.0f64);
|
||
|
rhs.ger(m_two, &work, &self.axis, N::one());
|
||
|
}
|
||
|
}
|