nalgebra/src/geometry/quaternion.rs

600 lines
18 KiB
Rust
Raw Normal View History

use std::fmt;
use std::hash;
use num::Zero;
use approx::ApproxEq;
#[cfg(feature = "serde-serialize")]
use serde;
#[cfg(feature = "serde-serialize")]
use core::storage::Owned;
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::Real;
2018-02-02 19:26:33 +08:00
use core::{Unit, Vector3, Vector4, MatrixSlice, MatrixSliceMut, MatrixN, Matrix3};
use core::dimension::{U1, U3, U4};
use core::storage::{RStride, CStride};
use geometry::Rotation;
/// A quaternion. See the type alias `UnitQuaternion = Unit<Quaternion>` for a quaternion
/// that may be used as a rotation.
#[repr(C)]
#[derive(Debug)]
pub struct Quaternion<N: Real> {
2017-02-13 01:17:09 +08:00
/// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order.
pub coords: Vector4<N>
}
#[cfg(feature = "abomonation-serialize")]
2017-08-16 01:36:38 +08:00
impl<N: Real> Abomonation for Quaternion<N>
2017-08-16 01:18:39 +08:00
where Vector4<N>: Abomonation
{
unsafe fn entomb(&self, writer: &mut Vec<u8>) {
self.coords.entomb(writer)
}
unsafe fn embalm(&mut self) {
self.coords.embalm()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.coords.exhume(bytes)
}
}
2017-08-16 01:18:39 +08:00
impl<N: Real + Eq> Eq for Quaternion<N> { }
impl<N: Real> PartialEq for Quaternion<N> {
fn eq(&self, rhs: &Self) -> bool {
self.coords == rhs.coords ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(rhs.as_vector().iter()).all(|(a, b)| *a == -*b)
}
}
impl<N: Real + hash::Hash> hash::Hash for Quaternion<N> {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<N: Real> Copy for Quaternion<N> { }
impl<N: Real> Clone for Quaternion<N> {
#[inline]
fn clone(&self) -> Self {
Quaternion::from_vector(self.coords.clone())
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Real> serde::Serialize for Quaternion<N>
where Owned<N, U4>: serde::Serialize {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer {
self.coords.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Real> serde::Deserialize<'a> for Quaternion<N>
where Owned<N, U4>: serde::Deserialize<'a> {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where Des: serde::Deserializer<'a> {
let coords = Vector4::<N>::deserialize(deserializer)?;
Ok(Quaternion::from_vector(coords))
}
}
impl<N: Real> Quaternion<N> {
/// Moves this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn into_owned(self) -> Quaternion<N> {
self
}
/// Clones this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn clone_owned(&self) -> Quaternion<N> {
Quaternion::from_vector(self.coords.clone_owned())
}
2017-02-13 01:17:09 +08:00
/// Normalizes this quaternion.
#[inline]
pub fn normalize(&self) -> Quaternion<N> {
Quaternion::from_vector(self.coords.normalize())
2017-02-13 01:17:09 +08:00
}
/// Compute the conjugate of this quaternion.
#[inline]
pub fn conjugate(&self) -> Quaternion<N> {
let v = Vector4::new(-self.coords[0], -self.coords[1], -self.coords[2], self.coords[3]);
Quaternion::from_vector(v)
}
/// Inverts this quaternion if it is not zero.
#[inline]
pub fn try_inverse(&self) -> Option<Quaternion<N>> {
let mut res = Quaternion::from_vector(self.coords.clone_owned());
if res.try_inverse_mut() {
Some(res)
}
else {
None
}
}
2017-02-13 01:17:09 +08:00
/// Linear interpolation between two quaternion.
#[inline]
pub fn lerp(&self, other: &Quaternion<N>, t: N) -> Quaternion<N> {
2017-02-13 01:17:09 +08:00
self * (N::one() - t) + other * t
}
/// The vector part `(i, j, k)` of this quaternion.
#[inline]
pub fn vector(&self) -> MatrixSlice<N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>> {
self.coords.fixed_rows::<U3>(0)
}
/// The scalar part `w` of this quaternion.
#[inline]
pub fn scalar(&self) -> N {
self.coords[3]
}
/// Reinterprets this quaternion as a 4D vector.
#[inline]
pub fn as_vector(&self) -> &Vector4<N> {
&self.coords
}
/// The norm of this quaternion.
#[inline]
pub fn norm(&self) -> N {
self.coords.norm()
}
/// The squared norm of this quaternion.
#[inline]
pub fn norm_squared(&self) -> N {
self.coords.norm_squared()
}
/// The polar decomposition of this quaternion.
///
/// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation
/// axis. If the rotation angle is zero, the rotation axis is set to `None`.
pub fn polar_decomposition(&self) -> (N, N, Option<Unit<Vector3<N>>>) {
if let Some((q, n)) = Unit::try_new_and_get(*self, N::zero()) {
if let Some(axis) = Unit::try_new(self.vector().clone_owned(), N::zero()) {
let angle = q.angle() / ::convert(2.0f64);
(n, angle, Some(axis))
}
else {
(n, N::zero(), None)
}
}
else {
(N::zero(), N::zero(), None)
}
}
/// Compute the exponential of a quaternion.
#[inline]
pub fn exp(&self) -> Quaternion<N> {
let v = self.vector();
let nn = v.norm_squared();
if relative_eq!(nn, N::zero()) {
Quaternion::identity()
}
else {
let w_exp = self.scalar().exp();
let n = nn.sqrt();
let nv = v * (w_exp * n.sin() / n);
Quaternion::from_parts(n.cos(), nv)
}
}
/// Compute the natural logarithm of a quaternion.
#[inline]
pub fn ln(&self) -> Quaternion<N> {
let n = self.norm();
let v = self.vector();
let s = self.scalar();
Quaternion::from_parts(n.ln(), v.normalize() * (s / n).acos())
}
/// Raise the quaternion to a given floating power.
#[inline]
pub fn powf(&self, n: N) -> Quaternion<N> {
(self.ln() * n).exp()
}
/// Transforms this quaternion into its 4D vector form (Vector part, Scalar part).
#[inline]
pub fn as_vector_mut(&mut self) -> &mut Vector4<N> {
&mut self.coords
}
/// The mutable vector part `(i, j, k)` of this quaternion.
#[inline]
pub fn vector_mut(&mut self) -> MatrixSliceMut<N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>> {
self.coords.fixed_rows_mut::<U3>(0)
}
/// Replaces this quaternion by its conjugate.
#[inline]
pub fn conjugate_mut(&mut self) {
self.coords[0] = -self.coords[0];
self.coords[1] = -self.coords[1];
self.coords[2] = -self.coords[2];
}
/// Inverts this quaternion in-place if it is not zero.
#[inline]
pub fn try_inverse_mut(&mut self) -> bool {
let norm_squared = self.norm_squared();
if relative_eq!(&norm_squared, &N::zero()) {
false
}
else {
self.conjugate_mut();
self.coords /= norm_squared;
true
}
}
2017-02-13 01:17:09 +08:00
/// Normalizes this quaternion.
#[inline]
pub fn normalize_mut(&mut self) -> N {
self.coords.normalize_mut()
}
}
impl<N: Real + ApproxEq<Epsilon = N>> ApproxEq for Quaternion<N> {
type Epsilon = N;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.as_vector().relative_eq(other.as_vector(), epsilon, max_relative) ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative))
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_vector().ulps_eq(other.as_vector(), epsilon, max_ulps) ||
// Account for the double-covering of S², i.e. q = -q.
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps))
}
}
impl<N: Real + fmt::Display> fmt::Display for Quaternion<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Quaternion {} ({}, {}, {})", self[3], self[0], self[1], self[2])
}
}
/// A unit quaternions. May be used to represent a rotation.
pub type UnitQuaternion<N> = Unit<Quaternion<N>>;
impl<N: Real> UnitQuaternion<N> {
2017-02-13 01:17:09 +08:00
/// Moves this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn into_owned(self) -> UnitQuaternion<N> {
self
2017-02-13 01:17:09 +08:00
}
/// Clones this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn clone_owned(&self) -> UnitQuaternion<N> {
*self
2017-02-13 01:17:09 +08:00
}
/// The rotation angle in [0; pi] of this unit quaternion.
#[inline]
pub fn angle(&self) -> N {
let w = self.quaternion().scalar().abs();
// Handle innacuracies that make break `.acos`.
if w >= N::one() {
N::zero()
}
else {
w.acos() * ::convert(2.0f64)
}
}
/// The underlying quaternion.
///
/// Same as `self.as_ref()`.
#[inline]
pub fn quaternion(&self) -> &Quaternion<N> {
self.as_ref()
}
/// Compute the conjugate of this unit quaternion.
#[inline]
pub fn conjugate(&self) -> UnitQuaternion<N> {
UnitQuaternion::new_unchecked(self.as_ref().conjugate())
}
/// Inverts this quaternion if it is not zero.
#[inline]
pub fn inverse(&self) -> UnitQuaternion<N> {
self.conjugate()
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &UnitQuaternion<N>) -> N {
let delta = self.rotation_to(other);
delta.angle()
}
/// The unit quaternion needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &UnitQuaternion<N>) -> UnitQuaternion<N> {
other / self
}
2017-02-13 01:17:09 +08:00
/// Linear interpolation between two unit quaternions.
///
/// The result is not normalized.
#[inline]
pub fn lerp(&self, other: &UnitQuaternion<N>, t: N) -> Quaternion<N> {
2017-02-13 01:17:09 +08:00
self.as_ref().lerp(other.as_ref(), t)
}
/// Normalized linear interpolation between two unit quaternions.
#[inline]
pub fn nlerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
2017-02-13 01:17:09 +08:00
let mut res = self.lerp(other, t);
let _ = res.normalize_mut();
UnitQuaternion::new_unchecked(res)
2017-02-13 01:17:09 +08:00
}
/// Spherical linear interpolation between two unit quaternions.
///
/// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
/// is not well-defined).
#[inline]
pub fn slerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
2017-02-13 01:17:09 +08:00
self.try_slerp(other, t, N::zero()).expect(
"Unable to perform a spherical quaternion interpolation when they \
are 180 degree apart (the result is not unique).")
}
/// Computes the spherical linear interpolation between two unit quaternions or returns `None`
/// if both quaternions are approximately 180 degrees apart (in which case the interpolation is
/// not well-defined).
///
/// # Arguments
/// * `self`: the first quaternion to interpolate from.
/// * `other`: the second quaternion to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
2017-10-27 12:13:35 +08:00
/// * `epsilon`: the value below which the sinus of the angle separating both quaternion
2017-02-13 01:17:09 +08:00
/// must be to return `None`.
#[inline]
pub fn try_slerp(&self, other: &UnitQuaternion<N>, t: N, epsilon: N) -> Option<UnitQuaternion<N>> {
2017-02-13 01:17:09 +08:00
let c_hang = self.coords.dot(&other.coords);
// self == other
if c_hang.abs() >= N::one() {
return Some(*self)
2017-02-13 01:17:09 +08:00
}
let hang = c_hang.acos();
let s_hang = (N::one() - c_hang * c_hang).sqrt();
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
if relative_eq!(s_hang, N::zero(), epsilon = epsilon) {
None
}
else {
let ta = ((N::one() - t) * hang).sin() / s_hang;
let tb = (t * hang).sin() / s_hang;
let res = self.as_ref() * ta + other.as_ref() * tb;
Some(UnitQuaternion::new_unchecked(res))
2017-02-13 01:17:09 +08:00
}
}
/// Compute the conjugate of this unit quaternion in-place.
#[inline]
pub fn conjugate_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// Inverts this quaternion if it is not zero.
#[inline]
pub fn inverse_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// The rotation axis of this unit quaternion or `None` if the rotation is zero.
#[inline]
pub fn axis(&self) -> Option<Unit<Vector3<N>>> {
let v =
if self.quaternion().scalar() >= N::zero() {
self.as_ref().vector().clone_owned()
}
else {
-self.as_ref().vector()
};
Unit::try_new(v, N::zero())
}
/// The rotation axis of this unit quaternion multiplied by the rotation agle.
#[inline]
pub fn scaled_axis(&self) -> Vector3<N> {
if let Some(axis) = self.axis() {
axis.unwrap() * self.angle()
}
else {
Vector3::zero()
}
}
/// Compute the exponential of a quaternion.
///
/// Note that this function yields a `Quaternion<N>` because it looses the unit property.
#[inline]
pub fn exp(&self) -> Quaternion<N> {
self.as_ref().exp()
}
/// Compute the natural logarithm of a quaternion.
///
/// Note that this function yields a `Quaternion<N>` because it looses the unit property.
/// The vector part of the return value corresponds to the axis-angle representation (divided
/// by 2.0) of this unit quaternion.
#[inline]
pub fn ln(&self) -> Quaternion<N> {
if let Some(v) = self.axis() {
Quaternion::from_parts(N::zero(), v.unwrap() * self.angle())
}
else {
Quaternion::zero()
}
}
/// Raise the quaternion to a given floating power.
///
/// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and
/// angle `self.angle() × n`.
#[inline]
pub fn powf(&self, n: N) -> UnitQuaternion<N> {
if let Some(v) = self.axis() {
UnitQuaternion::from_axis_angle(&v, self.angle() * n)
}
else {
UnitQuaternion::identity()
}
}
/// Builds a rotation matrix from this unit quaternion.
#[inline]
pub fn to_rotation_matrix(&self) -> Rotation<N, U3> {
let i = self.as_ref()[0];
let j = self.as_ref()[1];
let k = self.as_ref()[2];
let w = self.as_ref()[3];
let ww = w * w;
let ii = i * i;
let jj = j * j;
let kk = k * k;
let ij = i * j * ::convert(2.0f64);
let wk = w * k * ::convert(2.0f64);
let wj = w * j * ::convert(2.0f64);
let ik = i * k * ::convert(2.0f64);
let jk = j * k * ::convert(2.0f64);
let wi = w * i * ::convert(2.0f64);
Rotation::from_matrix_unchecked(
Matrix3::new(
ww + ii - jj - kk, ij - wk, wj + ik,
wk + ij, ww - ii + jj - kk, jk - wi,
ik - wj, wi + jk, ww - ii - jj + kk
)
)
}
/// Converts this unit quaternion into its equivalent Euler angles.
///
/// The angles are produced in the form (roll, yaw, pitch).
#[inline]
pub fn to_euler_angles(&self) -> (N, N, N) {
self.to_rotation_matrix().to_euler_angles()
}
/// Converts this unit quaternion into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, U4> {
self.to_rotation_matrix().to_homogeneous()
}
}
impl<N: Real + fmt::Display> fmt::Display for UnitQuaternion<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(axis) = self.axis() {
let axis = axis.unwrap();
write!(f, "UnitQuaternion angle: {} axis: ({}, {}, {})", self.angle(), axis[0], axis[1], axis[2])
}
else {
write!(f, "UnitQuaternion angle: {} axis: (undefined)", self.angle())
}
}
}
2017-02-13 01:17:09 +08:00
impl<N: Real + ApproxEq<Epsilon = N>> ApproxEq for UnitQuaternion<N> {
2017-02-13 01:17:09 +08:00
type Epsilon = N;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.as_ref().relative_eq(other.as_ref(), epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}