nalgebra/src/geometry/isometry.rs

241 lines
7.8 KiB
Rust
Raw Normal View History

use std::fmt;
use std::hash;
use std::marker::PhantomData;
use approx::ApproxEq;
#[cfg(feature = "serde-serialize")]
use serde;
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{Real, SubsetOf};
use alga::linear::Rotation;
2017-02-13 01:17:09 +08:00
use core::{DefaultAllocator, MatrixN};
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
use core::storage::Owned;
use core::allocator::Allocator;
use geometry::{Translation, Point};
2017-02-13 01:17:09 +08:00
/// A direct isometry, i.e., a rotation followed by a translation.
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(
serialize = "R: serde::Serialize,
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: serde::Serialize")))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(
deserialize = "R: serde::Deserialize<'de>,
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: serde::Deserialize<'de>")))]
pub struct Isometry<N: Real, D: DimName, R>
where DefaultAllocator: Allocator<N, D> {
2017-02-13 01:17:09 +08:00
/// The pure rotational part of this isometry.
pub rotation: R,
2017-02-13 01:17:09 +08:00
/// The pure translational part of this isometry.
pub translation: Translation<N, D>,
2017-02-13 01:17:09 +08:00
// One dummy private field just to prevent explicit construction.
#[cfg_attr(feature = "serde-serialize", serde(skip_serializing, skip_deserializing))]
2017-02-13 01:17:09 +08:00
_noconstruct: PhantomData<N>
}
#[cfg(feature = "abomonation-serialize")]
2017-08-16 01:36:38 +08:00
impl<N, D, R> Abomonation for Isometry<N, D, R>
where N: Real,
D: DimName,
R: Abomonation,
2017-08-16 01:36:38 +08:00
Translation<N, D>: Abomonation,
2017-08-16 01:18:39 +08:00
DefaultAllocator: Allocator<N, D>
{
unsafe fn entomb(&self, writer: &mut Vec<u8>) {
self.rotation.entomb(writer);
self.translation.entomb(writer);
}
unsafe fn embalm(&mut self) {
self.rotation.embalm();
self.translation.embalm();
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.rotation.exhume(bytes)
.and_then(|bytes| self.translation.exhume(bytes))
}
}
impl<N: Real + hash::Hash, D: DimName + hash::Hash, R: hash::Hash> hash::Hash for Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>,
Owned<N, D>: hash::Hash {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.translation.hash(state);
self.rotation.hash(state);
}
}
impl<N: Real, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy {
}
impl<N: Real, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D> {
#[inline]
fn clone(&self) -> Self {
Isometry::from_parts(self.translation.clone(), self.rotation.clone())
}
}
impl<N: Real, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D> {
2017-08-16 01:18:39 +08:00
/// Creates a new isometry from its rotational and translational parts.
#[inline]
pub fn from_parts(translation: Translation<N, D>, rotation: R) -> Isometry<N, D, R> {
Isometry {
rotation: rotation,
translation: translation,
_noconstruct: PhantomData
}
}
/// Inverts `self`.
#[inline]
pub fn inverse(&self) -> Isometry<N, D, R> {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self`.
#[inline]
pub fn inverse_mut(&mut self) {
self.rotation.inverse_mut();
self.translation.inverse_mut();
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
}
/// Appends to `self` the given translation in-place.
#[inline]
pub fn append_translation_mut(&mut self, t: &Translation<N, D>) {
self.translation.vector += &t.vector
}
/// Appends to `self` the given rotation in-place.
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.rotation = self.rotation.append_rotation(&r);
self.translation.vector = r.transform_vector(&self.translation.vector);
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>) {
self.translation.vector -= &p.coords;
self.append_rotation_mut(r);
self.translation.vector += &p.coords;
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
let center = Point::from_coordinates(self.translation.vector.clone());
self.append_rotation_wrt_point_mut(r, &center)
}
}
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
impl<N: Real, D: DimName, R> Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D> {
/// Converts this isometry into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
where D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
let mut res: MatrixN<N, _> = ::convert_ref(&self.rotation);
res.fixed_slice_mut::<D, U1>(0, D::dim()).copy_from(&self.translation.vector);
res
}
}
impl<N: Real, D: DimName, R> Eq for Isometry<N, D, R>
where R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D> {
}
impl<N: Real, D: DimName, R> PartialEq for Isometry<N, D, R>
where R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D> {
#[inline]
fn eq(&self, right: &Isometry<N, D, R>) -> bool {
self.translation == right.translation &&
self.rotation == right.rotation
}
}
impl<N: Real, D: DimName, R> ApproxEq for Isometry<N, D, R>
where R: Rotation<Point<N, D>> + ApproxEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy {
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.translation.relative_eq(&other.translation, epsilon, max_relative) &&
self.rotation.relative_eq(&other.rotation, epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.translation.ulps_eq(&other.translation, epsilon, max_ulps) &&
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N: Real + fmt::Display, D: DimName, R> fmt::Display for Isometry<N, D, R>
where R: fmt::Display,
DefaultAllocator: Allocator<N, D> +
Allocator<usize, D> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "Isometry {{"));
try!(write!(f, "{:.*}", precision, self.translation));
try!(write!(f, "{:.*}", precision, self.rotation));
writeln!(f, "}}")
}
}