forked from M-Labs/nalgebra
470 lines
16 KiB
Rust
470 lines
16 KiB
Rust
|
//! `proptest`-related features for `nalgebra` data structures.
|
||
|
//!
|
||
|
//! **This module is only available when the `proptest` feature is enabled in `nalgebra`**.
|
||
|
//!
|
||
|
//! `proptest` is a library for *property-based testing*. While similar to QuickCheck,
|
||
|
//! which may be more familiar to some users, it has a more sophisticated design that
|
||
|
//! provides users with automatic invariant-preserving shrinking. This means that when using
|
||
|
//! `proptest`, you rarely need to write your own shrinkers - which is usually very difficult -
|
||
|
//! and can instead get this "for free". Moreover, `proptest` does not rely on a canonical
|
||
|
//! `Arbitrary` trait implementation like QuickCheck, though it does also provide this. For
|
||
|
//! more information, check out the [proptest docs](https://docs.rs/proptest/0.10.1/proptest/)
|
||
|
//! and the [proptest book](https://altsysrq.github.io/proptest-book/intro.html).
|
||
|
//!
|
||
|
//! This module provides users of `nalgebra` with tools to work with `nalgebra` types in
|
||
|
//! `proptest` tests. At present, this integration is at an early stage, and only
|
||
|
//! provides tools for generating matrices and vectors, and not any of the geometry types.
|
||
|
//! There are essentially two ways of using this functionality:
|
||
|
//!
|
||
|
//! - Using the [matrix](fn.matrix.html) function to generate matrices with constraints
|
||
|
//! on dimensions and elements.
|
||
|
//! - Relying on the `Arbitrary` implementation of `MatrixMN`.
|
||
|
//!
|
||
|
//! The first variant is almost always preferred in practice. Read on to discover why.
|
||
|
//!
|
||
|
//! ### Using free function strategies
|
||
|
//!
|
||
|
//! In `proptest`, it is usually preferable to have free functions that generate *strategies*.
|
||
|
//! Currently, the [matrix](fn.matrix.html) function fills this role. The analogous function for
|
||
|
//! column vectors is [vector](fn.vector.html). Let's take a quick look at how it may be used:
|
||
|
//! ```rust
|
||
|
//! use nalgebra::proptest::matrix;
|
||
|
//! use proptest::prelude::*;
|
||
|
//!
|
||
|
//! proptest! {
|
||
|
//! # /*
|
||
|
//! #[test]
|
||
|
//! # */
|
||
|
//! fn my_test(a in matrix(-5 ..= 5, 2 ..= 4, 1..=4)) {
|
||
|
//! // Generates matrices with elements in the range -5 ..= 5, rows in 2..=4 and
|
||
|
//! // columns in 1..=4.
|
||
|
//! }
|
||
|
//! }
|
||
|
//!
|
||
|
//! # fn main() { my_test(); }
|
||
|
//! ```
|
||
|
//!
|
||
|
//! In the above example, we generate matrices with constraints on the elements, as well as the
|
||
|
//! on the allowed dimensions. When a failing example is found, the resulting shrinking process
|
||
|
//! will preserve these invariants. We can use this to compose more advanced strategies.
|
||
|
//! For example, let's consider a toy example where we need to generate pairs of matrices
|
||
|
//! with exactly 3 rows fixed at compile-time and the same number of columns, but we want the
|
||
|
//! number of columns to vary. One way to do this is to use `proptest` combinators in combination
|
||
|
//! with [matrix](fn.matrix.html) as follows:
|
||
|
//!
|
||
|
//! ```rust
|
||
|
//! use nalgebra::{Dynamic, MatrixMN, U3};
|
||
|
//! use nalgebra::proptest::matrix;
|
||
|
//! use proptest::prelude::*;
|
||
|
//!
|
||
|
//! type MyMatrix = MatrixMN<i32, U3, Dynamic>;
|
||
|
//!
|
||
|
//! /// Returns a strategy for pairs of matrices with `U3` rows and the same number of
|
||
|
//! /// columns.
|
||
|
//! fn matrix_pairs() -> impl Strategy<Value=(MyMatrix, MyMatrix)> {
|
||
|
//! matrix(-5 ..= 5, U3, 0 ..= 10)
|
||
|
//! // We first generate the initial matrix `a`, and then depending on the concrete
|
||
|
//! // instances of `a`, we pick a second matrix with the same number of columns
|
||
|
//! .prop_flat_map(|a| {
|
||
|
//! let b = matrix(-5 .. 5, U3, a.ncols());
|
||
|
//! // This returns a new tuple strategy where we keep `a` fixed while
|
||
|
//! // the second item is a strategy that generates instances with the same
|
||
|
//! // dimensions as `a`
|
||
|
//! (Just(a), b)
|
||
|
//! })
|
||
|
//! }
|
||
|
//!
|
||
|
//! proptest! {
|
||
|
//! # /*
|
||
|
//! #[test]
|
||
|
//! # */
|
||
|
//! fn my_test((a, b) in matrix_pairs()) {
|
||
|
//! // Let's double-check that the two matrices do indeed have the same number of
|
||
|
//! // columns
|
||
|
//! prop_assert_eq!(a.ncols(), b.ncols());
|
||
|
//! }
|
||
|
//! }
|
||
|
//!
|
||
|
//! # fn main() { my_test(); }
|
||
|
//! ```
|
||
|
//!
|
||
|
//! ### The `Arbitrary` implementation
|
||
|
//!
|
||
|
//! If you don't care about the dimensions of matrices, you can write tests like these:
|
||
|
//!
|
||
|
//! ```rust
|
||
|
//! use nalgebra::{DMatrix, DVector, Dynamic, Matrix3, MatrixMN, Vector3, U3};
|
||
|
//! use proptest::prelude::*;
|
||
|
//!
|
||
|
//! proptest! {
|
||
|
//! # /*
|
||
|
//! #[test]
|
||
|
//! # */
|
||
|
//! fn test_dynamic(matrix: DMatrix<i32>) {
|
||
|
//! // This will generate arbitrary instances of `DMatrix` and also attempt
|
||
|
//! // to shrink/simplify them when test failures are encountered.
|
||
|
//! }
|
||
|
//!
|
||
|
//! # /*
|
||
|
//! #[test]
|
||
|
//! # */
|
||
|
//! fn test_static_and_mixed(matrix: Matrix3<i32>, matrix2: MatrixMN<i32, U3, Dynamic>) {
|
||
|
//! // Test some property involving these matrices
|
||
|
//! }
|
||
|
//!
|
||
|
//! # /*
|
||
|
//! #[test]
|
||
|
//! # */
|
||
|
//! fn test_vectors(fixed_size_vector: Vector3<i32>, dyn_vector: DVector<i32>) {
|
||
|
//! // Test some property involving these vectors
|
||
|
//! }
|
||
|
//! }
|
||
|
//!
|
||
|
//! # fn main() { test_dynamic(); test_static_and_mixed(); test_vectors(); }
|
||
|
//! ```
|
||
|
//!
|
||
|
//! While this may be convenient, the default strategies for built-in types in `proptest` can
|
||
|
//! generate *any* number, including integers large enough to easily lead to overflow when used in
|
||
|
//! matrix operations, or even infinity or NaN values for floating-point types. Therefore
|
||
|
//! `Arbitrary` is rarely the method of choice for writing property-based tests.
|
||
|
//!
|
||
|
//! ### Notes on shrinking
|
||
|
//!
|
||
|
//! Due to some limitations of the current implementation, shrinking takes place by first
|
||
|
//! shrinking the matrix elements before trying to shrink the dimensions of the matrix.
|
||
|
//! This unfortunately often leads to the fact that a large number of shrinking iterations
|
||
|
//! are necessary to find a (nearly) minimal failing test case. As a workaround for this,
|
||
|
//! you can increase the maximum number of shrinking iterations when debugging. To do this,
|
||
|
//! simply set the `PROPTEST_MAX_SHRINK_ITERS` variable to a high number. For example:
|
||
|
//!
|
||
|
//! ```text
|
||
|
//! PROPTEST_MAX_SHRINK_ITERS=100000 cargo test my_failing_test
|
||
|
//! ```
|
||
|
use crate::allocator::Allocator;
|
||
|
use crate::{DefaultAllocator, Dim, DimName, Dynamic, MatrixMN, Scalar, U1};
|
||
|
use proptest::arbitrary::Arbitrary;
|
||
|
use proptest::collection::vec;
|
||
|
use proptest::strategy::{BoxedStrategy, Just, NewTree, Strategy, ValueTree};
|
||
|
use proptest::test_runner::TestRunner;
|
||
|
|
||
|
use std::ops::RangeInclusive;
|
||
|
|
||
|
/// Parameters for arbitrary matrix generation.
|
||
|
#[derive(Debug, Clone)]
|
||
|
#[non_exhaustive]
|
||
|
pub struct MatrixParameters<NParameters, R, C> {
|
||
|
/// The range of rows that may be generated.
|
||
|
pub rows: DimRange<R>,
|
||
|
/// The range of columns that may be generated.
|
||
|
pub cols: DimRange<C>,
|
||
|
/// Parameters for the `Arbitrary` implementation of the scalar values.
|
||
|
pub value_parameters: NParameters,
|
||
|
}
|
||
|
|
||
|
/// A range of allowed dimensions for use in generation of matrices.
|
||
|
///
|
||
|
/// The `DimRange` type is used to encode the range of dimensions that can be used for generation
|
||
|
/// of matrices with `proptest`. In most cases, you do not need to concern yourself with
|
||
|
/// `DimRange` directly, as it supports conversion from other types such as `U3` or inclusive
|
||
|
/// ranges such as `5 ..= 6`. The latter example corresponds to dimensions from (inclusive)
|
||
|
/// `Dynamic::new(5)` to `Dynamic::new(6)` (inclusive).
|
||
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
||
|
pub struct DimRange<D>(RangeInclusive<D>);
|
||
|
|
||
|
impl<D: Dim> DimRange<D> {
|
||
|
/// The lower bound for dimensions generated.
|
||
|
pub fn lower_bound(&self) -> D {
|
||
|
*self.0.start()
|
||
|
}
|
||
|
|
||
|
/// The upper bound for dimensions generated.
|
||
|
pub fn upper_bound(&self) -> D {
|
||
|
*self.0.end()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<D: Dim> From<D> for DimRange<D> {
|
||
|
fn from(dim: D) -> Self {
|
||
|
DimRange(dim..=dim)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<D: Dim> From<RangeInclusive<D>> for DimRange<D> {
|
||
|
fn from(range: RangeInclusive<D>) -> Self {
|
||
|
DimRange(range)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl From<RangeInclusive<usize>> for DimRange<Dynamic> {
|
||
|
fn from(range: RangeInclusive<usize>) -> Self {
|
||
|
DimRange::from(Dynamic::new(*range.start())..=Dynamic::new(*range.end()))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl From<usize> for DimRange<Dynamic> {
|
||
|
fn from(dim: usize) -> Self {
|
||
|
DimRange::from(Dynamic::new(dim))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// The default range used for Dynamic dimensions when generating arbitrary matrices.
|
||
|
fn dynamic_dim_range() -> DimRange<Dynamic> {
|
||
|
DimRange::from(0..=6)
|
||
|
}
|
||
|
|
||
|
/// Create a strategy to generate matrices containing values drawn from the given strategy,
|
||
|
/// with rows and columns in the provided ranges.
|
||
|
///
|
||
|
/// ## Examples
|
||
|
/// ```
|
||
|
/// use nalgebra::proptest::matrix;
|
||
|
/// use nalgebra::{MatrixMN, U3, Dynamic};
|
||
|
/// use proptest::prelude::*;
|
||
|
///
|
||
|
/// proptest! {
|
||
|
/// # /*
|
||
|
/// #[test]
|
||
|
/// # */
|
||
|
/// fn my_test(a in matrix(0 .. 5i32, U3, 0 ..= 5)) {
|
||
|
/// // Let's make sure we've got the correct type first
|
||
|
/// let a: MatrixMN<_, U3, Dynamic> = a;
|
||
|
/// prop_assert!(a.nrows() == 3);
|
||
|
/// prop_assert!(a.ncols() <= 5);
|
||
|
/// prop_assert!(a.iter().all(|x_ij| *x_ij >= 0 && *x_ij < 5));
|
||
|
/// }
|
||
|
/// }
|
||
|
///
|
||
|
/// # fn main() { my_test(); }
|
||
|
/// ```
|
||
|
///
|
||
|
/// ## Limitations
|
||
|
/// The current implementation has some limitations that lead to suboptimal shrinking behavior.
|
||
|
/// See the [module-level documentation](index.html) for more.
|
||
|
pub fn matrix<R, C, ScalarStrategy>(
|
||
|
value_strategy: ScalarStrategy,
|
||
|
rows: impl Into<DimRange<R>>,
|
||
|
cols: impl Into<DimRange<C>>,
|
||
|
) -> MatrixStrategy<ScalarStrategy, R, C>
|
||
|
where
|
||
|
ScalarStrategy: Strategy + Clone + 'static,
|
||
|
ScalarStrategy::Value: Scalar,
|
||
|
R: Dim,
|
||
|
C: Dim,
|
||
|
DefaultAllocator: Allocator<ScalarStrategy::Value, R, C>,
|
||
|
{
|
||
|
matrix_(value_strategy, rows.into(), cols.into())
|
||
|
}
|
||
|
|
||
|
/// Same as `matrix`, but without the additional anonymous generic types
|
||
|
fn matrix_<R, C, ScalarStrategy>(
|
||
|
value_strategy: ScalarStrategy,
|
||
|
rows: DimRange<R>,
|
||
|
cols: DimRange<C>,
|
||
|
) -> MatrixStrategy<ScalarStrategy, R, C>
|
||
|
where
|
||
|
ScalarStrategy: Strategy + Clone + 'static,
|
||
|
ScalarStrategy::Value: Scalar,
|
||
|
R: Dim,
|
||
|
C: Dim,
|
||
|
DefaultAllocator: Allocator<ScalarStrategy::Value, R, C>,
|
||
|
{
|
||
|
let nrows = rows.lower_bound().value()..=rows.upper_bound().value();
|
||
|
let ncols = cols.lower_bound().value()..=cols.upper_bound().value();
|
||
|
|
||
|
// Even though we can use this function to generate fixed-size matrices,
|
||
|
// we currently generate all matrices with heap allocated Vec data.
|
||
|
// TODO: Avoid heap allocation for fixed-size matrices.
|
||
|
// Doing this *properly* would probably require us to implement a custom
|
||
|
// strategy and valuetree with custom shrinking logic, which is not trivial
|
||
|
|
||
|
// Perhaps more problematic, however, is the poor shrinking behavior the current setup leads to.
|
||
|
// Shrinking in proptest basically happens in "reverse" of the combinators, so
|
||
|
// by first generating the dimensions and then the elements, we get shrinking that first
|
||
|
// tries to completely shrink the individual elements before trying to reduce the dimension.
|
||
|
// This is clearly the opposite of what we want. I can't find any good way around this
|
||
|
// short of writing our own custom value tree, which we should probably do at some point.
|
||
|
// TODO: Custom implementation of value tree for better shrinking behavior.
|
||
|
|
||
|
let strategy = nrows
|
||
|
.prop_flat_map(move |nrows| (Just(nrows), ncols.clone()))
|
||
|
.prop_flat_map(move |(nrows, ncols)| {
|
||
|
(
|
||
|
Just(nrows),
|
||
|
Just(ncols),
|
||
|
vec(value_strategy.clone(), nrows * ncols),
|
||
|
)
|
||
|
})
|
||
|
.prop_map(|(nrows, ncols, values)| {
|
||
|
// Note: R/C::from_usize will panic if nrows/ncols does not fit in the dimension type.
|
||
|
// However, this should never fail, because we should only be generating
|
||
|
// this stuff in the first place
|
||
|
MatrixMN::from_iterator_generic(R::from_usize(nrows), C::from_usize(ncols), values)
|
||
|
})
|
||
|
.boxed();
|
||
|
|
||
|
MatrixStrategy { strategy }
|
||
|
}
|
||
|
|
||
|
/// Create a strategy to generate column vectors containing values drawn from the given strategy,
|
||
|
/// with length in the provided range.
|
||
|
///
|
||
|
/// This is a convenience function for calling
|
||
|
/// [matrix(value_strategy, length, U1)](fn.matrix.html) and should
|
||
|
/// be used when you only want to generate column vectors, as it's simpler and makes the intent
|
||
|
/// clear.
|
||
|
pub fn vector<D, ScalarStrategy>(
|
||
|
value_strategy: ScalarStrategy,
|
||
|
length: impl Into<DimRange<D>>,
|
||
|
) -> MatrixStrategy<ScalarStrategy, D, U1>
|
||
|
where
|
||
|
ScalarStrategy: Strategy + Clone + 'static,
|
||
|
ScalarStrategy::Value: Scalar,
|
||
|
D: Dim,
|
||
|
DefaultAllocator: Allocator<ScalarStrategy::Value, D>,
|
||
|
{
|
||
|
matrix_(value_strategy, length.into(), U1.into())
|
||
|
}
|
||
|
|
||
|
impl<NParameters, R, C> Default for MatrixParameters<NParameters, R, C>
|
||
|
where
|
||
|
NParameters: Default,
|
||
|
R: DimName,
|
||
|
C: DimName,
|
||
|
{
|
||
|
fn default() -> Self {
|
||
|
Self {
|
||
|
rows: DimRange::from(R::name()),
|
||
|
cols: DimRange::from(C::name()),
|
||
|
value_parameters: NParameters::default(),
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<NParameters, R> Default for MatrixParameters<NParameters, R, Dynamic>
|
||
|
where
|
||
|
NParameters: Default,
|
||
|
R: DimName,
|
||
|
{
|
||
|
fn default() -> Self {
|
||
|
Self {
|
||
|
rows: DimRange::from(R::name()),
|
||
|
cols: dynamic_dim_range(),
|
||
|
value_parameters: NParameters::default(),
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<NParameters, C> Default for MatrixParameters<NParameters, Dynamic, C>
|
||
|
where
|
||
|
NParameters: Default,
|
||
|
C: DimName,
|
||
|
{
|
||
|
fn default() -> Self {
|
||
|
Self {
|
||
|
rows: dynamic_dim_range(),
|
||
|
cols: DimRange::from(C::name()),
|
||
|
value_parameters: NParameters::default(),
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<NParameters> Default for MatrixParameters<NParameters, Dynamic, Dynamic>
|
||
|
where
|
||
|
NParameters: Default,
|
||
|
{
|
||
|
fn default() -> Self {
|
||
|
Self {
|
||
|
rows: dynamic_dim_range(),
|
||
|
cols: dynamic_dim_range(),
|
||
|
value_parameters: NParameters::default(),
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N, R, C> Arbitrary for MatrixMN<N, R, C>
|
||
|
where
|
||
|
N: Scalar + Arbitrary,
|
||
|
<N as Arbitrary>::Strategy: Clone,
|
||
|
R: Dim,
|
||
|
C: Dim,
|
||
|
MatrixParameters<N::Parameters, R, C>: Default,
|
||
|
DefaultAllocator: Allocator<N, R, C>,
|
||
|
{
|
||
|
type Parameters = MatrixParameters<N::Parameters, R, C>;
|
||
|
|
||
|
fn arbitrary_with(args: Self::Parameters) -> Self::Strategy {
|
||
|
let value_strategy = N::arbitrary_with(args.value_parameters);
|
||
|
matrix(value_strategy, args.rows, args.cols)
|
||
|
}
|
||
|
|
||
|
type Strategy = MatrixStrategy<N::Strategy, R, C>;
|
||
|
}
|
||
|
|
||
|
/// A strategy for generating matrices.
|
||
|
#[derive(Debug)]
|
||
|
pub struct MatrixStrategy<NStrategy, R: Dim, C: Dim>
|
||
|
where
|
||
|
NStrategy: Strategy,
|
||
|
NStrategy::Value: Scalar,
|
||
|
DefaultAllocator: Allocator<NStrategy::Value, R, C>,
|
||
|
{
|
||
|
// For now we only internally hold a boxed strategy. The reason for introducing this
|
||
|
// separate wrapper struct is so that we can replace the strategy logic with custom logic
|
||
|
// later down the road without introducing significant breaking changes
|
||
|
strategy: BoxedStrategy<MatrixMN<NStrategy::Value, R, C>>,
|
||
|
}
|
||
|
|
||
|
impl<NStrategy, R, C> Strategy for MatrixStrategy<NStrategy, R, C>
|
||
|
where
|
||
|
NStrategy: Strategy,
|
||
|
NStrategy::Value: Scalar,
|
||
|
R: Dim,
|
||
|
C: Dim,
|
||
|
DefaultAllocator: Allocator<NStrategy::Value, R, C>,
|
||
|
{
|
||
|
type Tree = MatrixValueTree<NStrategy::Value, R, C>;
|
||
|
type Value = MatrixMN<NStrategy::Value, R, C>;
|
||
|
|
||
|
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
|
||
|
let underlying_tree = self.strategy.new_tree(runner)?;
|
||
|
Ok(MatrixValueTree {
|
||
|
value_tree: underlying_tree,
|
||
|
})
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// A value tree for matrices.
|
||
|
pub struct MatrixValueTree<N, R, C>
|
||
|
where
|
||
|
N: Scalar,
|
||
|
R: Dim,
|
||
|
C: Dim,
|
||
|
DefaultAllocator: Allocator<N, R, C>,
|
||
|
{
|
||
|
// For now we only wrap a boxed value tree. The reason for wrapping is that this allows us
|
||
|
// to swap out the value tree logic down the road without significant breaking changes.
|
||
|
value_tree: Box<dyn ValueTree<Value = MatrixMN<N, R, C>>>,
|
||
|
}
|
||
|
|
||
|
impl<N, R, C> ValueTree for MatrixValueTree<N, R, C>
|
||
|
where
|
||
|
N: Scalar,
|
||
|
R: Dim,
|
||
|
C: Dim,
|
||
|
DefaultAllocator: Allocator<N, R, C>,
|
||
|
{
|
||
|
type Value = MatrixMN<N, R, C>;
|
||
|
|
||
|
fn current(&self) -> Self::Value {
|
||
|
self.value_tree.current()
|
||
|
}
|
||
|
|
||
|
fn simplify(&mut self) -> bool {
|
||
|
self.value_tree.simplify()
|
||
|
}
|
||
|
|
||
|
fn complicate(&mut self) -> bool {
|
||
|
self.value_tree.complicate()
|
||
|
}
|
||
|
}
|