1
0
forked from M-Labs/nalgebra
nalgebra/tests/mat.rs

432 lines
9.8 KiB
Rust
Raw Normal View History

#![feature(macro_rules)]
extern crate "nalgebra" as na;
use std::num::{Float, abs};
use std::rand::random;
use std::cmp::{min, max};
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, Persp3, PerspMat3, Ortho3, OrthoMat3,
DMat, DVec, Indexable, Row, Col};
2013-05-19 01:04:03 +08:00
2013-05-22 07:15:03 +08:00
macro_rules! test_inv_mat_impl(
2013-06-09 22:04:54 +08:00
($t: ty) => (
for _ in range(0u, 10000) {
2013-05-22 07:15:03 +08:00
let randmat : $t = random();
match na::inv(&randmat) {
None => { },
Some(i) => assert!(na::approx_eq(&(i * randmat), &na::one()))
}
}
2013-05-22 07:15:03 +08:00
);
)
2013-05-19 01:04:03 +08:00
2013-07-23 17:15:20 +08:00
macro_rules! test_transpose_mat_impl(
($t: ty) => (
for _ in range(0u, 10000) {
2013-07-23 17:15:20 +08:00
let randmat : $t = random();
Api change: deal with inplace/out of place methods. Before, it was too easy to use an out of place method instead of the inplace one since they name were pretty mutch the same. This kind of confusion may lead to silly bugs very hard to understand. Thus the following changes have been made when a method is available both inplace and out-of-place: * inplace version keep a short name. * out-of-place version are suffixed by `_cpy` (meaning `copy`), and are static methods. Methods applying transformations (rotation, translation or general transform) are now prefixed by `append`, and a `prepend` version is available too. Also, free functions doing in-place modifications dont really make sense. They have been removed. Here are the naming changes: * `invert` -> `inv` * `inverted` -> `Inv::inv_cpy` * `transpose` -> `transpose` * `transposed` -> `Transpose::transpose_cpy` * `transform_by` -> `append_transformation` * `transformed` -> `Transform::append_transformation_cpy` * `rotate_by` -> `apppend_rotation` * `rotated` -> `Rotation::append_rotation_cpy` * `translate_by` -> `apppend_translation` * `translate` -> `Translation::append_translation_cpy` * `normalized` -> `Norm::normalize_cpy` * `rotated_wrt_point` -> `RotationWithTranslation::append_rotation_wrt_point_cpy` * `rotated_wrt_center` -> `RotationWithTranslation::append_rotation_wrt_center_cpy` Note that using those static methods is very verbose, and using in-place methods require an explicit import of the related trait. This is a way to convince the user to use free functions most of the time.
2013-10-14 16:22:32 +08:00
assert!(na::transpose(&na::transpose(&randmat)) == randmat);
}
2013-07-23 17:15:20 +08:00
);
)
macro_rules! test_qr_impl(
($t: ty) => (
for _ in range(0u, 10000) {
let randmat : $t = random();
let (q, r) = na::qr(&randmat);
let recomp = q * r;
assert!(na::approx_eq(&randmat, &recomp));
}
);
)
// NOTE: deactivated untile we get a better convergence rate.
// macro_rules! test_eigen_qr_impl(
// ($t: ty) => {
// for _ in range(0u, 10000) {
// let randmat : $t = random();
// // Make it symetric so that we can recompose the matrix to test at the end.
// let randmat = na::transpose(&randmat) * randmat;
//
// let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &Float::epsilon(), 100);
//
// let diag: $t = Diag::from_diag(&eigenvalues);
//
// let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
//
// println!("eigenvalues: {}", eigenvalues);
// println!(" mat: {}", randmat);
// println!("recomp: {}", recomp);
//
// assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
// }
// }
// )
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat1() {
test_transpose_mat_impl!(Mat1<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat2() {
test_transpose_mat_impl!(Mat2<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat3() {
test_transpose_mat_impl!(Mat3<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat4() {
test_transpose_mat_impl!(Mat4<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat5() {
test_transpose_mat_impl!(Mat5<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat6() {
test_transpose_mat_impl!(Mat6<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat1() {
test_inv_mat_impl!(Mat1<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat2() {
test_inv_mat_impl!(Mat2<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat3() {
test_inv_mat_impl!(Mat3<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat4() {
test_inv_mat_impl!(Mat4<f64>);
2013-08-05 16:13:44 +08:00
}
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat5() {
test_inv_mat_impl!(Mat5<f64>);
2013-08-05 16:13:44 +08:00
}
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat6() {
test_inv_mat_impl!(Mat6<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_rotation2() {
for _ in range(0u, 10000) {
let randmat: na::Rot2<f64> = na::one();
let ang = Vec1::new(abs::<f64>(random()) % Float::pi());
2013-05-19 19:53:19 +08:00
assert!(na::approx_eq(&na::rotation(&na::append_rotation(&randmat, &ang)), &ang));
}
2013-05-19 01:04:03 +08:00
}
#[test]
2013-08-05 16:13:44 +08:00
fn test_index_mat2() {
let mat: Mat2<f64> = random();
Api change: deal with inplace/out of place methods. Before, it was too easy to use an out of place method instead of the inplace one since they name were pretty mutch the same. This kind of confusion may lead to silly bugs very hard to understand. Thus the following changes have been made when a method is available both inplace and out-of-place: * inplace version keep a short name. * out-of-place version are suffixed by `_cpy` (meaning `copy`), and are static methods. Methods applying transformations (rotation, translation or general transform) are now prefixed by `append`, and a `prepend` version is available too. Also, free functions doing in-place modifications dont really make sense. They have been removed. Here are the naming changes: * `invert` -> `inv` * `inverted` -> `Inv::inv_cpy` * `transpose` -> `transpose` * `transposed` -> `Transpose::transpose_cpy` * `transform_by` -> `append_transformation` * `transformed` -> `Transform::append_transformation_cpy` * `rotate_by` -> `apppend_rotation` * `rotated` -> `Rotation::append_rotation_cpy` * `translate_by` -> `apppend_translation` * `translate` -> `Translation::append_translation_cpy` * `normalized` -> `Norm::normalize_cpy` * `rotated_wrt_point` -> `RotationWithTranslation::append_rotation_wrt_point_cpy` * `rotated_wrt_center` -> `RotationWithTranslation::append_rotation_wrt_center_cpy` Note that using those static methods is very verbose, and using in-place methods require an explicit import of the related trait. This is a way to convince the user to use free functions most of the time.
2013-10-14 16:22:32 +08:00
assert!(mat.at((0, 1)) == na::transpose(&mat).at((1, 0)));
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_rotation3() {
for _ in range(0u, 10000) {
let randmat: Rot3<f64> = na::one();
let dir: Vec3<f64> = random();
let ang = na::normalize(&dir) * (abs::<f64>(random()) % Float::pi());
Api change: deal with inplace/out of place methods. Before, it was too easy to use an out of place method instead of the inplace one since they name were pretty mutch the same. This kind of confusion may lead to silly bugs very hard to understand. Thus the following changes have been made when a method is available both inplace and out-of-place: * inplace version keep a short name. * out-of-place version are suffixed by `_cpy` (meaning `copy`), and are static methods. Methods applying transformations (rotation, translation or general transform) are now prefixed by `append`, and a `prepend` version is available too. Also, free functions doing in-place modifications dont really make sense. They have been removed. Here are the naming changes: * `invert` -> `inv` * `inverted` -> `Inv::inv_cpy` * `transpose` -> `transpose` * `transposed` -> `Transpose::transpose_cpy` * `transform_by` -> `append_transformation` * `transformed` -> `Transform::append_transformation_cpy` * `rotate_by` -> `apppend_rotation` * `rotated` -> `Rotation::append_rotation_cpy` * `translate_by` -> `apppend_translation` * `translate` -> `Translation::append_translation_cpy` * `normalized` -> `Norm::normalize_cpy` * `rotated_wrt_point` -> `RotationWithTranslation::append_rotation_wrt_point_cpy` * `rotated_wrt_center` -> `RotationWithTranslation::append_rotation_wrt_center_cpy` Note that using those static methods is very verbose, and using in-place methods require an explicit import of the related trait. This is a way to convince the user to use free functions most of the time.
2013-10-14 16:22:32 +08:00
let rot = na::append_rotation(&randmat, &ang);
assert!(na::approx_eq(&(na::transpose(&rot) * rot), &na::one()));
}
}
#[test]
fn test_mean_dmat() {
let mat = DMat::from_row_vec(
3,
3,
[
1.0f64, 2.0, 3.0,
4.0f64, 5.0, 6.0,
7.0f64, 8.0, 9.0,
]
);
assert!(na::approx_eq(&na::mean(&mat), &DVec::from_slice(3, [4.0f64, 5.0, 6.0])));
}
#[test]
fn test_cov_dmat() {
let mat = DMat::from_row_vec(
5,
3,
[
4.0f64, 2.0, 0.60,
4.2f64, 2.1, 0.59,
3.9f64, 2.0, 0.58,
4.3f64, 2.1, 0.62,
4.1f64, 2.2, 0.63
]
);
let expected = DMat::from_row_vec(
3,
3,
[
0.025f64, 0.0075, 0.00175,
0.0075f64, 0.007, 0.00135,
0.00175f64, 0.00135, 0.00043
]
);
assert!(na::approx_eq(&na::cov(&mat), &expected));
2013-07-23 17:15:20 +08:00
}
#[test]
fn test_transpose_dmat() {
let mat = DMat::from_row_vec(
8,
4,
[
1u32,2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32
]
);
assert!(na::transpose(&na::transpose(&mat)) == mat);
}
#[test]
fn test_dmat_from_vec() {
let mat1 = DMat::from_row_vec(
8,
4,
[
1i32, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32
]
);
let mat2 = DMat::from_col_vec(
8,
4,
[
1i32, 5, 9, 13, 17, 21, 25, 29,
2i32, 6, 10, 14, 18, 22, 26, 30,
3i32, 7, 11, 15, 19, 23, 27, 31,
4i32, 8, 12, 16, 20, 24, 28, 32
]
);
println!("mat1: {}, mat2: {}", mat1, mat2);
assert!(mat1 == mat2);
}
#[test]
fn test_qr() {
for _ in range(0u, 10) {
let dim1: uint = random();
let dim2: uint = random();
let rows = min(40, max(dim1, dim2));
let cols = min(40, min(dim1, dim2));
let randmat: DMat<f64> = DMat::new_random(rows, cols);
let (q, r) = na::qr(&randmat);
let recomp = q * r;
assert!(na::approx_eq(&randmat, &recomp));
}
}
#[test]
fn test_qr_mat1() {
test_qr_impl!(Mat1<f64>);
}
#[test]
fn test_qr_mat2() {
test_qr_impl!(Mat2<f64>);
}
#[test]
fn test_qr_mat3() {
test_qr_impl!(Mat3<f64>);
}
#[test]
fn test_qr_mat4() {
test_qr_impl!(Mat4<f64>);
}
#[test]
fn test_qr_mat5() {
test_qr_impl!(Mat5<f64>);
}
#[test]
fn test_qr_mat6() {
test_qr_impl!(Mat6<f64>);
}
// NOTE: deactivated until we get a better convergence rate.
// #[test]
// fn test_eigen_qr_mat1() {
// test_eigen_qr_impl!(Mat1<f64>);
// }
//
// #[test]
// fn test_eigen_qr_mat2() {
// test_eigen_qr_impl!(Mat2<f64>);
// }
//
// #[test]
// fn test_eigen_qr_mat3() {
// test_eigen_qr_impl!(Mat3<f64>);
// }
//
// #[test]
// fn test_eigen_qr_mat4() {
// test_eigen_qr_impl!(Mat4<f64>);
// }
//
// #[test]
// fn test_eigen_qr_mat5() {
// test_eigen_qr_impl!(Mat5<f64>);
// }
//
// #[test]
// fn test_eigen_qr_mat6() {
// test_eigen_qr_impl!(Mat6<f64>);
// }
#[test]
fn test_from_fn() {
let actual: DMat<uint> = DMat::from_fn(3, 4, |i, j| 10 * i + j);
let expected: DMat<uint> = DMat::from_row_vec(3, 4,
[0_0, 0_1, 0_2, 0_3,
1_0, 1_1, 1_2, 1_3,
2_0, 2_1, 2_2, 2_3 ]);
assert_eq!(actual, expected);
}
#[test]
fn test_row_3() {
let mat = Mat3::new(0.0f32, 1.0, 2.0,
3.0, 4.0, 5.0,
6.0, 7.0, 8.0);
let second_row = mat.row(1);
let second_col = mat.col(1);
assert!(second_row == Vec3::new(3.0, 4.0, 5.0));
assert!(second_col == Vec3::new(1.0, 4.0, 7.0));
}
#[test]
fn test_persp() {
let mut p = Persp3::new(42.0f64, 0.5, 1.5, 10.0);
let mut pm = PerspMat3::new(42.0f64, 0.5, 1.5, 10.0);
assert!(p.to_mat() == pm.to_mat());
assert!(p.aspect() == 42.0);
assert!(p.fov() == 0.5);
assert!(p.znear() == 1.5);
assert!(p.zfar() == 10.0);
assert!(na::approx_eq(&pm.aspect(), &42.0));
assert!(na::approx_eq(&pm.fov(), &0.5));
assert!(na::approx_eq(&pm.znear(), &1.5));
assert!(na::approx_eq(&pm.zfar(), &10.0));
p.set_fov(0.1);
pm.set_fov(0.1);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
p.set_znear(24.0);
pm.set_znear(24.0);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
p.set_zfar(61.0);
pm.set_zfar(61.0);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
p.set_aspect(23.0);
pm.set_aspect(23.0);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
assert!(p.aspect() == 23.0);
assert!(p.fov() == 0.1);
assert!(p.znear() == 24.0);
assert!(p.zfar() == 61.0);
assert!(na::approx_eq(&pm.aspect(), &23.0));
assert!(na::approx_eq(&pm.fov(), &0.1));
assert!(na::approx_eq(&pm.znear(), &24.0));
assert!(na::approx_eq(&pm.zfar(), &61.0));
}
#[test]
fn test_ortho() {
let mut p = Ortho3::new(42.0f64, 0.5, 1.5, 10.0);
let mut pm = OrthoMat3::new(42.0f64, 0.5, 1.5, 10.0);
assert!(p.to_mat() == pm.to_mat());
assert!(p.width() == 42.0);
assert!(p.height() == 0.5);
assert!(p.znear() == 1.5);
assert!(p.zfar() == 10.0);
assert!(na::approx_eq(&pm.width(), &42.0));
assert!(na::approx_eq(&pm.height(), &0.5));
assert!(na::approx_eq(&pm.znear(), &1.5));
assert!(na::approx_eq(&pm.zfar(), &10.0));
p.set_width(0.1);
pm.set_width(0.1);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
p.set_znear(24.0);
pm.set_znear(24.0);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
p.set_zfar(61.0);
pm.set_zfar(61.0);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
p.set_height(23.0);
pm.set_height(23.0);
assert!(na::approx_eq(&p.to_mat(), pm.as_mat()));
assert!(p.height() == 23.0);
assert!(p.width() == 0.1);
assert!(p.znear() == 24.0);
assert!(p.zfar() == 61.0);
assert!(na::approx_eq(&pm.height(), &23.0));
assert!(na::approx_eq(&pm.width(), &0.1));
assert!(na::approx_eq(&pm.znear(), &24.0));
assert!(na::approx_eq(&pm.zfar(), &61.0));
}