forked from M-Labs/nalgebra
294 lines
9.1 KiB
Rust
294 lines
9.1 KiB
Rust
|
// TODO: Remove this allowance
|
||
|
#![allow(missing_docs)]
|
||
|
|
||
|
use crate::pattern::SparsityPattern;
|
||
|
use crate::csc::CscMatrix;
|
||
|
use core::{mem, iter};
|
||
|
use nalgebra::{U1, VectorN, Dynamic, Scalar, RealField};
|
||
|
use num_traits::Zero;
|
||
|
use std::sync::Arc;
|
||
|
use std::ops::Add;
|
||
|
|
||
|
pub struct CscSymbolicCholesky {
|
||
|
// Pattern of the original matrix that was decomposed
|
||
|
m_pattern: Arc<SparsityPattern>,
|
||
|
l_pattern: SparsityPattern,
|
||
|
// u in this context is L^T, so that M = L L^T
|
||
|
u_pattern: SparsityPattern
|
||
|
}
|
||
|
|
||
|
impl CscSymbolicCholesky {
|
||
|
pub fn factor(pattern: &Arc<SparsityPattern>) -> Self {
|
||
|
assert_eq!(pattern.major_dim(), pattern.minor_dim(),
|
||
|
"Major and minor dimensions must be the same (square matrix).");
|
||
|
|
||
|
// TODO: Temporary stopgap solution to make things work until we can refactor
|
||
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||
|
struct DummyVal;
|
||
|
impl Zero for DummyVal {
|
||
|
fn zero() -> Self {
|
||
|
DummyVal
|
||
|
}
|
||
|
|
||
|
fn is_zero(&self) -> bool {
|
||
|
true
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl Add<DummyVal> for DummyVal {
|
||
|
type Output = Self;
|
||
|
|
||
|
fn add(self, rhs: DummyVal) -> Self::Output {
|
||
|
rhs
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let dummy_vals = vec![DummyVal; pattern.nnz()];
|
||
|
let dummy_csc = CscMatrix::try_from_pattern_and_values(Arc::clone(pattern), dummy_vals)
|
||
|
.unwrap();
|
||
|
let (l, u) = nonzero_pattern(&dummy_csc);
|
||
|
// TODO: Don't clone unnecessarily
|
||
|
Self {
|
||
|
m_pattern: Arc::clone(pattern),
|
||
|
l_pattern: l.pattern().as_ref().clone(),
|
||
|
u_pattern: u.pattern().as_ref().clone()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pub fn l_pattern(&self) -> &SparsityPattern {
|
||
|
&self.l_pattern
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pub struct CscCholesky<T> {
|
||
|
// Pattern of the original matrix
|
||
|
m_pattern: Arc<SparsityPattern>,
|
||
|
l_factor: CscMatrix<T>,
|
||
|
u_pattern: SparsityPattern,
|
||
|
work_x: Vec<T>,
|
||
|
work_c: Vec<usize>
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||
|
pub enum CholeskyError {
|
||
|
|
||
|
}
|
||
|
|
||
|
impl<T: RealField> CscCholesky<T> {
|
||
|
|
||
|
pub fn factor(matrix: &CscMatrix<T>) -> Result<Self, CholeskyError> {
|
||
|
let symbolic = CscSymbolicCholesky::factor(&*matrix.pattern());
|
||
|
assert_eq!(symbolic.l_pattern.nnz(), symbolic.u_pattern.nnz(),
|
||
|
"u is just the transpose of l, so should have the same nnz");
|
||
|
|
||
|
let l_nnz = symbolic.l_pattern.nnz();
|
||
|
let l_values = vec![T::zero(); l_nnz];
|
||
|
let l_factor = CscMatrix::try_from_pattern_and_values(Arc::new(symbolic.l_pattern), l_values)
|
||
|
.unwrap();
|
||
|
|
||
|
let mut factorization = CscCholesky {
|
||
|
m_pattern: symbolic.m_pattern,
|
||
|
l_factor,
|
||
|
u_pattern: symbolic.u_pattern,
|
||
|
work_x: vec![T::zero(); matrix.nrows()],
|
||
|
// Fill with MAX so that things hopefully totally fail if values are not
|
||
|
// overwritten. Might be easier to debug this way
|
||
|
work_c: vec![usize::MAX, matrix.ncols()],
|
||
|
};
|
||
|
|
||
|
factorization.refactor(matrix.values())?;
|
||
|
Ok(factorization)
|
||
|
}
|
||
|
|
||
|
pub fn refactor(&mut self, values: &[T]) -> Result<(), CholeskyError> {
|
||
|
self.decompose_left_looking(values)
|
||
|
}
|
||
|
|
||
|
pub fn l(&self) -> &CscMatrix<T> {
|
||
|
&self.l_factor
|
||
|
}
|
||
|
|
||
|
pub fn take_l(self) -> CscMatrix<T> {
|
||
|
self.l_factor
|
||
|
}
|
||
|
|
||
|
/// Perform a numerical left-looking cholesky decomposition of a matrix with the same structure as the
|
||
|
/// one used to initialize `self`, but with different non-zero values provided by `values`.
|
||
|
fn decompose_left_looking(&mut self, values: &[T]) -> Result<(), CholeskyError> {
|
||
|
assert!(
|
||
|
values.len() >= self.m_pattern.nnz(),
|
||
|
// TODO: Improve error message
|
||
|
"The set of values is too small."
|
||
|
);
|
||
|
|
||
|
let n = self.l_factor.nrows();
|
||
|
|
||
|
// Reset `work_c` to the column pointers of `l`.
|
||
|
self.work_c.clear();
|
||
|
self.work_c.extend_from_slice(self.l_factor.col_offsets());
|
||
|
|
||
|
unsafe {
|
||
|
for k in 0..n {
|
||
|
// Scatter the k-th column of the original matrix with the values provided.
|
||
|
let range_begin = *self.m_pattern.major_offsets().get_unchecked(k);
|
||
|
let range_end = *self.m_pattern.major_offsets().get_unchecked(k + 1);
|
||
|
let range_k = range_begin..range_end;
|
||
|
|
||
|
*self.work_x.get_unchecked_mut(k) = T::zero();
|
||
|
for p in range_k.clone() {
|
||
|
let irow = *self.m_pattern.minor_indices().get_unchecked(p);
|
||
|
|
||
|
if irow >= k {
|
||
|
*self.work_x.get_unchecked_mut(irow) = *values.get_unchecked(p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for &j in self.u_pattern.lane(k) {
|
||
|
let factor = -*self
|
||
|
.l_factor
|
||
|
.values()
|
||
|
.get_unchecked(*self.work_c.get_unchecked(j));
|
||
|
*self.work_c.get_unchecked_mut(j) += 1;
|
||
|
|
||
|
if j < k {
|
||
|
let col_j = self.l_factor.col(j);
|
||
|
let col_j_entries = col_j.row_indices().iter().zip(col_j.values());
|
||
|
for (&z, val) in col_j_entries {
|
||
|
if z >= k {
|
||
|
*self.work_x.get_unchecked_mut(z) += val.inlined_clone() * factor;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let diag = *self.work_x.get_unchecked(k);
|
||
|
|
||
|
if diag > T::zero() {
|
||
|
let denom = diag.sqrt();
|
||
|
|
||
|
{
|
||
|
let (offsets, _, values) = self.l_factor.csc_data_mut();
|
||
|
*values
|
||
|
.get_unchecked_mut(*offsets.get_unchecked(k)) = denom;
|
||
|
}
|
||
|
|
||
|
|
||
|
let mut col_k = self.l_factor.col_mut(k);
|
||
|
let (col_k_rows, col_k_values) = col_k.rows_and_values_mut();
|
||
|
let col_k_entries = col_k_rows.iter().zip(col_k_values);
|
||
|
for (&p, val) in col_k_entries {
|
||
|
*val = *self.work_x.get_unchecked(p) / denom;
|
||
|
*self.work_x.get_unchecked_mut(p) = T::zero();
|
||
|
}
|
||
|
} else {
|
||
|
// self.ok = false;
|
||
|
// TODO: Return indefinite error (i.e. encountered non-positive diagonal
|
||
|
unimplemented!()
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Ok(())
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
fn reach<T>(
|
||
|
m: &CscMatrix<T>,
|
||
|
j: usize,
|
||
|
max_j: usize,
|
||
|
tree: &[usize],
|
||
|
marks: &mut Vec<bool>,
|
||
|
out: &mut Vec<usize>,
|
||
|
) {
|
||
|
marks.clear();
|
||
|
marks.resize(tree.len(), false);
|
||
|
|
||
|
// TODO: avoid all those allocations.
|
||
|
let mut tmp = Vec::new();
|
||
|
let mut res = Vec::new();
|
||
|
|
||
|
for &irow in m.col(j).row_indices() {
|
||
|
let mut curr = irow;
|
||
|
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
|
||
|
marks[curr] = true;
|
||
|
tmp.push(curr);
|
||
|
curr = tree[curr];
|
||
|
}
|
||
|
|
||
|
tmp.append(&mut res);
|
||
|
mem::swap(&mut tmp, &mut res);
|
||
|
}
|
||
|
|
||
|
// TODO: Is this right?
|
||
|
res.sort_unstable();
|
||
|
|
||
|
out.append(&mut res);
|
||
|
}
|
||
|
|
||
|
fn nonzero_pattern<T: Scalar + Zero>(
|
||
|
m: &CscMatrix<T>
|
||
|
) -> (CscMatrix<T>, CscMatrix<T>) {
|
||
|
// TODO: In order to stay as faithful as possible to the original implementation,
|
||
|
// we here return full matrices, whereas we actually only need to construct sparsity patterns
|
||
|
|
||
|
let etree = elimination_tree(m);
|
||
|
let (nrows, ncols) = (m.nrows(), m.ncols());
|
||
|
let mut rows = Vec::with_capacity(m.nnz());
|
||
|
// TODO: Use a Vec here instead
|
||
|
let mut cols = unsafe { VectorN::new_uninitialized_generic(Dynamic::new(nrows), U1) };
|
||
|
let mut marks = Vec::new();
|
||
|
|
||
|
// NOTE: the following will actually compute the non-zero pattern of
|
||
|
// the transpose of l.
|
||
|
for i in 0..nrows {
|
||
|
cols[i] = rows.len();
|
||
|
reach(m, i, i, &etree, &mut marks, &mut rows);
|
||
|
}
|
||
|
|
||
|
// TODO: Get rid of this in particular
|
||
|
let mut vals = Vec::with_capacity(rows.len());
|
||
|
unsafe {
|
||
|
vals.set_len(rows.len());
|
||
|
}
|
||
|
vals.shrink_to_fit();
|
||
|
|
||
|
// TODO: Remove this unnecessary conversion by using Vec throughout
|
||
|
let mut cols: Vec<_> = cols.iter().cloned().collect();
|
||
|
cols.push(rows.len());
|
||
|
|
||
|
let u = CscMatrix::try_from_csc_data(nrows, ncols, cols, rows, vals).unwrap();
|
||
|
// TODO: Avoid this transpose
|
||
|
let l = u.transpose();
|
||
|
|
||
|
(l, u)
|
||
|
}
|
||
|
|
||
|
fn elimination_tree<T>(m: &CscMatrix<T>) -> Vec<usize> {
|
||
|
let nrows = m.nrows();
|
||
|
let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
||
|
let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
||
|
|
||
|
for k in 0..nrows {
|
||
|
for &irow in m.col(k).row_indices() {
|
||
|
let mut i = irow;
|
||
|
|
||
|
while i < k {
|
||
|
let i_ancestor = ancestor[i];
|
||
|
ancestor[i] = k;
|
||
|
|
||
|
if i_ancestor == usize::max_value() {
|
||
|
forest[i] = k;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
i = i_ancestor;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
forest
|
||
|
}
|