nalgebra/src/structs/quat.rs

473 lines
12 KiB
Rust
Raw Normal View History

2013-11-25 22:31:46 +08:00
//! Quaternion definition.
#![allow(missing_docs)] // we allow missing to avoid having to document the dispatch trait.
2014-10-15 03:37:44 +08:00
use std::mem;
use std::num;
use std::rand::{Rand, Rng};
use std::slice::{Iter, IterMut};
2015-01-04 05:48:10 +08:00
use std::ops::*;
use std::iter::FromIterator;
use structs::{Vec3, Pnt3, Rot3, Mat3};
use traits::operations::{ApproxEq, Inv, POrd, POrdering, Axpy, ScalarAdd, ScalarSub, ScalarMul,
ScalarDiv};
use traits::structure::{Cast, Indexable, Iterable, IterableMut, Dim, Shape, BaseFloat, BaseNum, Zero,
One, Bounded};
use traits::geometry::{Norm, Rotation, Rotate, Transform};
2014-10-15 03:37:44 +08:00
2013-11-25 22:31:46 +08:00
/// A quaternion.
2015-01-04 05:48:10 +08:00
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Hash, Rand, Show, Copy)]
2013-11-25 22:31:46 +08:00
pub struct Quat<N> {
2014-10-15 03:37:44 +08:00
/// The scalar component of the quaternion.
pub w: N,
/// The first vector component of the quaternion.
pub i: N,
/// The second vector component of the quaternion.
pub j: N,
/// The third vector component of the quaternion.
pub k: N
2013-11-25 22:31:46 +08:00
}
impl<N> Quat<N> {
2014-10-15 03:37:44 +08:00
/// Creates a new quaternion from its components.
#[inline]
pub fn new(w: N, i: N, j: N, k: N) -> Quat<N> {
2013-11-25 22:31:46 +08:00
Quat {
w: w,
i: i,
j: j,
k: k
}
}
2014-10-15 03:37:44 +08:00
/// The vector part `(i, j, k)` of this quaternion.
#[inline]
pub fn vector<'a>(&'a self) -> &'a Vec3<N> {
// FIXME: do this require a `repr(C)` ?
unsafe {
mem::transmute(&self.i)
}
}
/// The scalar part `w` of this quaternion.
#[inline]
pub fn scalar<'a>(&'a self) -> &'a N {
&self.w
}
2013-11-25 22:31:46 +08:00
}
impl<N: Neg<N> + Copy> Quat<N> {
2014-10-15 03:37:44 +08:00
/// Replaces this quaternion by its conjugate.
#[inline]
pub fn conjugate(&mut self) {
self.i = -self.i;
self.j = -self.j;
self.k = -self.k;
2013-11-25 22:31:46 +08:00
}
}
impl<N: BaseFloat + ApproxEq<N>> Inv for Quat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn inv_cpy(&self) -> Option<Quat<N>> {
let mut res = *self;
2014-10-15 03:37:44 +08:00
if res.inv() {
Some(res)
}
else {
None
}
}
#[inline]
fn inv(&mut self) -> bool {
let sqnorm = Norm::sqnorm(self);
if ApproxEq::approx_eq(&sqnorm, &::zero()) {
2014-10-15 03:37:44 +08:00
false
}
else {
self.conjugate();
self.w = self.w / sqnorm;
self.i = self.i / sqnorm;
self.j = self.j / sqnorm;
self.k = self.k / sqnorm;
true
}
}
}
impl<N: BaseFloat> Norm<N> for Quat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn sqnorm(&self) -> N {
self.w * self.w + self.i * self.i + self.j * self.j + self.k * self.k
2014-10-15 03:37:44 +08:00
}
#[inline]
fn normalize_cpy(&self) -> Quat<N> {
let n = self.norm();
Quat::new(self.w / n, self.i / n, self.j / n, self.k / n)
2014-10-15 03:37:44 +08:00
}
#[inline]
fn normalize(&mut self) -> N {
let n = Norm::norm(self);
self.w = self.w / n;
self.i = self.i / n;
self.j = self.j / n;
self.k = self.k / n;
n
}
}
impl<N: Copy + Mul<N, N> + Sub<N, N> + Add<N, N>> Mul<Quat<N>, Quat<N>> for Quat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn mul(self, right: Quat<N>) -> Quat<N> {
2013-11-25 22:31:46 +08:00
Quat::new(
self.w * right.w - self.i * right.i - self.j * right.j - self.k * right.k,
self.w * right.i + self.i * right.w + self.j * right.k - self.k * right.j,
self.w * right.j - self.i * right.k + self.j * right.w + self.k * right.i,
self.w * right.k + self.i * right.j - self.j * right.i + self.k * right.w)
2014-10-15 03:37:44 +08:00
}
}
impl<N: ApproxEq<N> + BaseFloat> Div<Quat<N>, Quat<N>> for Quat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn div(self, right: Quat<N>) -> Quat<N> {
self * right.inv_cpy().expect("Unable to invert the denominator.")
2014-10-15 03:37:44 +08:00
}
}
/// A unit quaternion that can represent a 3D rotation.
2015-01-04 05:48:10 +08:00
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Hash, Show, Copy)]
2014-10-15 03:37:44 +08:00
pub struct UnitQuat<N> {
q: Quat<N>
}
impl<N: BaseFloat> UnitQuat<N> {
2014-10-15 03:37:44 +08:00
/// Creates a new unit quaternion from the axis-angle representation of a rotation.
#[inline]
pub fn new(axisangle: Vec3<N>) -> UnitQuat<N> {
let sqang = Norm::sqnorm(&axisangle);
if ::is_zero(&sqang) {
::one()
2014-10-15 03:37:44 +08:00
}
else {
let ang = sqang.sqrt();
let (s, c) = (ang / num::cast(2.0f64).unwrap()).sin_cos();
let s_ang = s / ang;
unsafe {
UnitQuat::new_with_unit_quat(
Quat::new(
c,
axisangle.x * s_ang,
axisangle.y * s_ang,
axisangle.z * s_ang)
)
}
}
}
/// Creates a new unit quaternion from a quaternion.
///
/// The input quaternion will be normalized.
#[inline]
pub fn new_with_quat(q: Quat<N>) -> UnitQuat<N> {
let mut q = q;
let _ = q.normalize();
UnitQuat {
q: q
}
}
/// Creates a new unit quaternion from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
#[inline]
pub fn new_with_euler_angles(roll: N, pitch: N, yaw: N) -> UnitQuat<N> {
let _0_5: N = num::cast(0.5f64).unwrap();
let (sr, cr) = (roll * _0_5).sin_cos();
let (sp, cp) = (pitch * _0_5).sin_cos();
let (sy, cy) = (yaw * _0_5).sin_cos();
unsafe {
UnitQuat::new_with_unit_quat(
Quat::new(
cr * cp * cy + sr * sp * sy,
sr * cp * cy - cr * sp * sy,
cr * sp * cy + sr * cp * sy,
cr * cp * sy - sr * sp * cy)
2013-11-25 22:31:46 +08:00
)
2014-10-15 03:37:44 +08:00
}
}
/// Builds a rotation matrix from this quaternion.
pub fn to_rot(&self) -> Rot3<N> {
let _2: N = num::cast(2.0f64).unwrap();
let ww = self.q.w * self.q.w;
let ii = self.q.i * self.q.i;
let jj = self.q.j * self.q.j;
let kk = self.q.k * self.q.k;
let ij = _2 * self.q.i * self.q.j;
let wk = _2 * self.q.w * self.q.k;
let wj = _2 * self.q.w * self.q.j;
let ik = _2 * self.q.i * self.q.k;
let jk = _2 * self.q.j * self.q.k;
let wi = _2 * self.q.w * self.q.i;
unsafe {
Rot3::new_with_mat(
Mat3::new(
ww + ii - jj - kk, ij - wk, wj + ik,
wk + ij, ww - ii + jj - kk, jk - wi,
ik - wj, wi + jk, ww - ii - jj + kk
)
)
}
2013-11-25 22:31:46 +08:00
}
}
2014-10-15 03:37:44 +08:00
impl<N> UnitQuat<N> {
/// Creates a new unit quaternion from a quaternion.
///
/// This is unsafe because the input quaternion will not be normalized.
#[inline]
pub unsafe fn new_with_unit_quat(q: Quat<N>) -> UnitQuat<N> {
UnitQuat {
q: q
}
}
/// The `Quat` representation of this unit quaternion.
#[inline]
pub fn quat<'a>(&'a self) -> &'a Quat<N> {
&self.q
}
}
impl<N: BaseNum> One for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn one() -> UnitQuat<N> {
unsafe {
UnitQuat::new_with_unit_quat(Quat::new(::one(), ::zero(), ::zero(), ::zero()))
2014-10-15 03:37:44 +08:00
}
}
}
impl<N: Copy + Neg<N>> Inv for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn inv_cpy(&self) -> Option<UnitQuat<N>> {
let mut cpy = *self;
2014-10-15 03:37:44 +08:00
cpy.inv();
Some(cpy)
}
#[inline]
fn inv(&mut self) -> bool {
self.q.conjugate();
true
}
}
impl<N: Rand + BaseFloat> Rand for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn rand<R: Rng>(rng: &mut R) -> UnitQuat<N> {
UnitQuat::new(rng.gen())
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for UnitQuat<N> {
#[inline]
fn approx_epsilon(_: Option<UnitQuat<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_eq_eps(&self, other: &UnitQuat<N>, eps: &N) -> bool {
ApproxEq::approx_eq_eps(&self.q, &other.q, eps)
2014-10-15 03:37:44 +08:00
}
}
impl<N: BaseFloat + ApproxEq<N>> Div<UnitQuat<N>, UnitQuat<N>> for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn div(self, other: UnitQuat<N>) -> UnitQuat<N> {
2014-10-15 03:37:44 +08:00
UnitQuat { q: self.q / other.q }
}
}
impl<N: BaseNum> Mul<UnitQuat<N>, UnitQuat<N>> for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn mul(self, right: UnitQuat<N>) -> UnitQuat<N> {
UnitQuat { q: self.q * right.q }
2014-10-15 03:37:44 +08:00
}
}
impl<N: BaseNum> Mul<Vec3<N>, Vec3<N>> for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn mul(self, right: Vec3<N>) -> Vec3<N> {
let _2: N = ::one::<N>() + ::one();
let mut t = ::cross(self.q.vector(), &right);
2014-10-15 03:37:44 +08:00
t.x = t.x * _2;
t.y = t.y * _2;
t.z = t.z * _2;
Vec3::new(t.x * self.q.w, t.y * self.q.w, t.z * self.q.w) + ::cross(self.q.vector(), &t) + right
2014-10-15 03:37:44 +08:00
}
}
impl<N: BaseNum> Mul<Pnt3<N>, Pnt3<N>> for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn mul(self, right: Pnt3<N>) -> Pnt3<N> {
::orig::<Pnt3<N>>() + self * *right.as_vec()
2014-10-15 03:37:44 +08:00
}
}
impl<N: BaseNum> Mul<UnitQuat<N>, Vec3<N>> for Vec3<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn mul(self, right: UnitQuat<N>) -> Vec3<N> {
let mut inv_quat = right;
2014-10-15 03:37:44 +08:00
inv_quat.inv();
inv_quat * self
2014-10-15 03:37:44 +08:00
}
}
impl<N: BaseNum> Mul<UnitQuat<N>, Pnt3<N>> for Pnt3<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn mul(self, right: UnitQuat<N>) -> Pnt3<N> {
::orig::<Pnt3<N>>() + *self.as_vec() * right
2014-10-15 03:37:44 +08:00
}
}
impl<N: BaseFloat> Rotation<Vec3<N>> for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn rotation(&self) -> Vec3<N> {
let _2 = ::one::<N>() + ::one();
let mut v = *self.q.vector();
2014-10-15 03:37:44 +08:00
let ang = _2 * v.normalize().atan2(self.q.w);
if ::is_zero(&ang) {
::zero()
2014-10-15 03:37:44 +08:00
}
else {
Vec3::new(v.x * ang, v.y * ang, v.z * ang)
}
}
#[inline]
fn inv_rotation(&self) -> Vec3<N> {
-self.rotation()
}
#[inline]
fn append_rotation(&mut self, amount: &Vec3<N>) {
*self = Rotation::append_rotation_cpy(self, amount)
}
#[inline]
fn append_rotation_cpy(&self, amount: &Vec3<N>) -> UnitQuat<N> {
*self * UnitQuat::new(*amount)
2014-10-15 03:37:44 +08:00
}
#[inline]
fn prepend_rotation(&mut self, amount: &Vec3<N>) {
*self = Rotation::prepend_rotation_cpy(self, amount)
}
#[inline]
fn prepend_rotation_cpy(&self, amount: &Vec3<N>) -> UnitQuat<N> {
UnitQuat::new(*amount) * *self
2014-10-15 03:37:44 +08:00
}
#[inline]
fn set_rotation(&mut self, v: Vec3<N>) {
*self = UnitQuat::new(v)
}
}
impl<N: BaseNum> Rotate<Vec3<N>> for UnitQuat<N> {
2013-11-25 22:31:46 +08:00
#[inline]
fn rotate(&self, v: &Vec3<N>) -> Vec3<N> {
2014-10-15 03:37:44 +08:00
*self * *v
2013-11-25 22:31:46 +08:00
}
#[inline]
fn inv_rotate(&self, v: &Vec3<N>) -> Vec3<N> {
2014-10-15 03:37:44 +08:00
*v * *self
2013-11-25 22:31:46 +08:00
}
}
impl<N: BaseNum> Rotate<Pnt3<N>> for UnitQuat<N> {
2013-11-25 22:31:46 +08:00
#[inline]
2014-10-15 03:37:44 +08:00
fn rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
*self * *p
}
2013-11-25 22:31:46 +08:00
2014-10-15 03:37:44 +08:00
#[inline]
fn inv_rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
*p * *self
2013-11-25 22:31:46 +08:00
}
2014-10-15 03:37:44 +08:00
}
2013-11-25 22:31:46 +08:00
impl<N: BaseNum> Transform<Vec3<N>> for UnitQuat<N> {
2013-11-25 22:31:46 +08:00
#[inline]
2014-10-15 03:37:44 +08:00
fn transform(&self, v: &Vec3<N>) -> Vec3<N> {
*self * *v
}
2013-11-25 22:31:46 +08:00
2014-10-15 03:37:44 +08:00
#[inline]
fn inv_transform(&self, v: &Vec3<N>) -> Vec3<N> {
*v * *self
}
}
impl<N: BaseNum> Transform<Pnt3<N>> for UnitQuat<N> {
2014-10-15 03:37:44 +08:00
#[inline]
fn transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
*self * *p
}
#[inline]
fn inv_transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
*p * *self
2013-11-25 22:31:46 +08:00
}
}
2014-10-15 03:37:44 +08:00
ord_impl!(Quat, w, i, j, k);
vec_axis_impl!(Quat, w, i, j, k);
vec_cast_impl!(Quat, w, i, j, k);
as_array_impl!(Quat, 4);
index_impl!(Quat);
indexable_impl!(Quat, 4);
at_fast_impl!(Quat, 4);
new_repeat_impl!(Quat, val, w, i, j, k);
dim_impl!(Quat, 3);
container_impl!(Quat);
add_impl!(Quat, w, i, j, k);
sub_impl!(Quat, w, i, j, k);
scalar_add_impl!(Quat, w, i, j, k);
scalar_sub_impl!(Quat, w, i, j, k);
scalar_mul_impl!(Quat, w, i, j, k);
scalar_div_impl!(Quat, w, i, j, k);
neg_impl!(Quat, w, i, j, k);
scalar_ops_impl!(Quat, w, i, j, k);
zero_one_impl!(Quat, w, i, j, k);
approx_eq_impl!(Quat, w, i, j, k);
from_iterator_impl!(Quat, iterator, iterator, iterator, iterator);
bounded_impl!(Quat, w, i, j, k);
axpy_impl!(Quat, w, i, j, k);
iterable_impl!(Quat, 4);
iterable_mut_impl!(Quat, 4);
dim_impl!(UnitQuat, 3);