forked from M-Labs/nalgebra
41 lines
1.9 KiB
Rust
41 lines
1.9 KiB
Rust
|
//! TODO
|
||
|
//!
|
||
|
//! TODO: Clarify that this module needs proptest-support feature
|
||
|
|
||
|
use crate::coo::CooMatrix;
|
||
|
use proptest::prelude::*;
|
||
|
use proptest::collection::{SizeRange, vec};
|
||
|
use nalgebra::Scalar;
|
||
|
|
||
|
/// TODO
|
||
|
pub fn coo<T>(
|
||
|
value_strategy: T,
|
||
|
rows: impl Strategy<Value=usize> + 'static,
|
||
|
cols: impl Strategy<Value=usize> + 'static,
|
||
|
max_nonzeros: usize) -> BoxedStrategy<CooMatrix<T::Value>>
|
||
|
where
|
||
|
T: Strategy + Clone + 'static,
|
||
|
T::Value: Scalar,
|
||
|
{
|
||
|
(rows, cols, (0 ..= max_nonzeros))
|
||
|
.prop_flat_map(move |(nrows, ncols, nnz)| {
|
||
|
// If the numbers of rows and columns are small in comparison with the
|
||
|
// max nnz, it will lead to small matrices essentially always turning out to be dense.
|
||
|
// To address this, we correct the nnz by computing the modulo with the
|
||
|
// maximum number of non-zeros (ignoring duplicates) we can have for
|
||
|
// the given dimensions.
|
||
|
// This way we can still generate very sparse matrices for small matrices.
|
||
|
let max_nnz = nrows * ncols;
|
||
|
let nnz = if max_nnz == 0 { 0 } else { nnz % max_nnz };
|
||
|
let row_index_strategy = if nrows > 0 { 0 .. nrows } else { 0 .. 1 };
|
||
|
let col_index_strategy = if ncols > 0 { 0 .. ncols } else { 0 .. 1 };
|
||
|
let row_indices = vec![row_index_strategy.clone(); nnz];
|
||
|
let col_indices = vec![col_index_strategy.clone(); nnz];
|
||
|
let values_strategy = vec![value_strategy.clone(); nnz];
|
||
|
|
||
|
(Just(nrows), Just(ncols), row_indices, col_indices, values_strategy)
|
||
|
}).prop_map(|(nrows, ncols, row_indices, col_indices, values)| {
|
||
|
CooMatrix::try_from_triplets(nrows, ncols, row_indices, col_indices, values)
|
||
|
.expect("We should always generate valid COO data.")
|
||
|
}).boxed()
|
||
|
}
|