forked from M-Labs/nalgebra
163 lines
4.6 KiB
Rust
163 lines
4.6 KiB
Rust
|
use ::{Real, Dim, Matrix, VectorN, RowVectorN, DefaultAllocator, U1, VectorSliceN};
|
||
|
use storage::Storage;
|
||
|
use allocator::Allocator;
|
||
|
|
||
|
impl<N: Real, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||
|
#[inline]
|
||
|
pub fn compress_rows(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> RowVectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, U1, C> {
|
||
|
|
||
|
let ncols = self.data.shape().1;
|
||
|
let mut res = unsafe { RowVectorN::new_uninitialized_generic(U1, ncols) };
|
||
|
|
||
|
for i in 0..ncols.value() {
|
||
|
// FIXME: avoid bound checking of column.
|
||
|
unsafe { *res.get_unchecked_mut(0, i) = f(self.column(i)); }
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn compress_rows_tr(&self, f: impl Fn(VectorSliceN<N, R, S::RStride, S::CStride>) -> N) -> VectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, C> {
|
||
|
|
||
|
let ncols = self.data.shape().1;
|
||
|
let mut res = unsafe { VectorN::new_uninitialized_generic(ncols, U1) };
|
||
|
|
||
|
for i in 0..ncols.value() {
|
||
|
// FIXME: avoid bound checking of column.
|
||
|
unsafe { *res.vget_unchecked_mut(i) = f(self.column(i)); }
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn compress_columns(&self, init: VectorN<N, R>, f: impl Fn(&mut VectorN<N, R>, VectorSliceN<N, R, S::RStride, S::CStride>)) -> VectorN<N, R>
|
||
|
where DefaultAllocator: Allocator<N, R> {
|
||
|
let mut res = init;
|
||
|
|
||
|
for i in 0..self.ncols() {
|
||
|
f(&mut res, self.column(i))
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Real, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||
|
/*
|
||
|
*
|
||
|
* Sum computation.
|
||
|
*
|
||
|
*/
|
||
|
#[inline]
|
||
|
pub fn sum(&self) -> N {
|
||
|
self.iter().cloned().fold(N::zero(), |a, b| a + b)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn row_sum(&self) -> RowVectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, U1, C> {
|
||
|
self.compress_rows(|col| col.sum())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn row_sum_tr(&self) -> VectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, C> {
|
||
|
self.compress_rows_tr(|col| col.sum())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn column_sum(&self) -> VectorN<N, R>
|
||
|
where DefaultAllocator: Allocator<N, R> {
|
||
|
let nrows = self.data.shape().0;
|
||
|
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
|
||
|
out.axpy(N::one(), &col, N::one())
|
||
|
})
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* Variance computation.
|
||
|
*
|
||
|
*/
|
||
|
#[inline]
|
||
|
pub fn variance(&self) -> N {
|
||
|
if self.len() == 0 {
|
||
|
N::zero()
|
||
|
} else {
|
||
|
let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| (a.0 + b * b, a.1 + b));
|
||
|
let denom = N::one() / ::convert::<_, N>(self.len() as f64);
|
||
|
val.0 * denom - (val.1 * denom) * (val.1 * denom)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn row_variance(&self) -> RowVectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, U1, C> {
|
||
|
self.compress_rows(|col| col.variance())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn row_variance_tr(&self) -> VectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, C> {
|
||
|
self.compress_rows_tr(|col| col.variance())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn column_variance(&self) -> VectorN<N, R>
|
||
|
where DefaultAllocator: Allocator<N, R> {
|
||
|
let (nrows, ncols) = self.data.shape();
|
||
|
|
||
|
let mut mean = self.column_mean();
|
||
|
mean.apply(|e| -(e * e));
|
||
|
|
||
|
let denom = N::one() / ::convert::<_, N>(ncols.value() as f64);
|
||
|
self.compress_columns(mean, |out, col| {
|
||
|
for i in 0..nrows.value() {
|
||
|
unsafe {
|
||
|
let val = col.vget_unchecked(i);
|
||
|
*out.vget_unchecked_mut(i) += denom * *val * *val
|
||
|
}
|
||
|
}
|
||
|
})
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* Mean computation.
|
||
|
*
|
||
|
*/
|
||
|
#[inline]
|
||
|
pub fn mean(&self) -> N {
|
||
|
if self.len() == 0 {
|
||
|
N::zero()
|
||
|
} else {
|
||
|
self.sum() / ::convert(self.len() as f64)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn row_mean(&self) -> RowVectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, U1, C> {
|
||
|
self.compress_rows(|col| col.mean())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn row_mean_tr(&self) -> VectorN<N, C>
|
||
|
where DefaultAllocator: Allocator<N, C> {
|
||
|
self.compress_rows_tr(|col| col.mean())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn column_mean(&self) -> VectorN<N, R>
|
||
|
where DefaultAllocator: Allocator<N, R> {
|
||
|
let (nrows, ncols) = self.data.shape();
|
||
|
let denom = N::one() / ::convert::<_, N>(ncols.value() as f64);
|
||
|
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
|
||
|
out.axpy(denom, &col, N::one())
|
||
|
})
|
||
|
}
|
||
|
}
|